Skip to main content

Advertisement

Log in

Imaging Arrhythmogenic Calcium Signaling in Intact Hearts

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Protein complex of the cardiac junctional sarcoplasmic reticulum (SR) membrane formed by type 2 ryanodine receptor, junction, triadin, and calsequestrin is responsible for controlling SR calcium (Ca) release. Increased intracellular calcium (Cai) activates the electrogenic sodium–Ca exchanger current, which is known to be important in afterdepolarization and triggered activities (TAs). Using optical-mapping techniques, it is possible to simultaneously map membrane potential (V m) and Cai transient in Langendorff-perfused rabbit ventricles to better define the mechanisms by which V m and Cai interactions cause early afterdepolarizations (EADs). Phase 3 EAD is dependent on heterogeneously prolonged action potential duration (APD). Electrotonic currents that flow between a persistently depolarized region and its recovered neighbors underlies the mechanisms of phase 3 EADs and TAs. In contrast, “late phase-3 EAD” is induced by APD shortening, not APD prolongation. In failing ventricles, upregulation of apamin-sensitive Ca-activated potassium (K) channels (I KAS) causes APD shortening after fibrillation-defibrillation episodes. Shortened APD in the presence of large Cai transients generates late-phase 3 EADs and recurrent spontaneous ventricular fibrillation. The latter findings suggest that I KAS may be a novel antiarrhythmic targets in patients with heart failure and electrical storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baartscheer A, Schumacher CA, Belterman CN, Coronel R, Fiolet JW (2003) SR calcium handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc Res 58:99–108

    Article  PubMed  CAS  Google Scholar 

  2. Bailie DS, Inoue H, Kaseda S, Ben-David J, Zipes DP (1988) Magnesium suppression of early afterdepolarizations and ventricular tachyarrhythmias induced by cesium in dogs. Circulation 77:1395–1402

    Article  PubMed  CAS  Google Scholar 

  3. Brugada P, Wellens HJ (1985) Early afterdepolarizations: role in conduction block, “prolonged repolarization-dependent reexcitation,” and tachyarrhythmias in the human heart. Pacing Clin Electrophysiol 8:889–896

    Article  PubMed  CAS  Google Scholar 

  4. Burashnikov A, Antzelevitch C (2003) Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation 107:2355–2360

    Article  PubMed  Google Scholar 

  5. Castle NA, Haylett DG, Jenkinson DH (1989) Toxins in the characterization of potassium channels. Trends Neurosci 12:59–65

    Article  PubMed  CAS  Google Scholar 

  6. Chen PS, Antzelevitch C (2010) Mechanisms of cardiac arrhythmias and conduction disturbances. In: Valentin F, Richard AW, Robert H (ed) Hurst’s the heart. McGraw-Hill Professional, New York

  7. Choi BR, Salama G (2000) Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol 529(Pt 1):171–188

    Article  PubMed  CAS  Google Scholar 

  8. Choi BR, Burton F, Salama G (2002) Cytosolic Ca2+ triggers early after depolarizations and torsade de pointes in rabbit hearts with type 2 long QT syndrome. J Physiol 543:615–631

    Article  PubMed  CAS  Google Scholar 

  9. Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ et al (2011) Small-conductance calcium-activated potassium channel and recurrent ventricular fibrillation in failing rabbit ventricles. Circ Res 108(8):971–979

    Article  PubMed  CAS  Google Scholar 

  10. Damiano BP, Rosen MR (1984) Effects of pacing on triggered activity induced by early afterdepolarizations. Circulation 69:1013–1025

    Article  PubMed  CAS  Google Scholar 

  11. Davidenko JM, Cohen L, Goodrow R, Antzelevitch C (1989) Quinidine-induced action potential prolongation, early afterdepolarizations, and triggered activity in canine purkinje fibers. Effects of stimulation rate, potassium, and magnesium. Circulation 79:674–686

    Article  PubMed  CAS  Google Scholar 

  12. January CT, Chau V, Makielski JC (1991) Triggered activity in the heart: cellular mechanisms of early after-depolarizations. Eur Heart J 12(Suppl F):4–9

    Google Scholar 

  13. Koretsune Y, Marban E (1989) Cell calcium in the pathophysiology of ventricular fibrillation and in the pathogenesis of postarrhythmic contractile dysfunction. Circulation 80:369–379

    Article  PubMed  CAS  Google Scholar 

  14. Maruyama M, Lin SF, Xie Y, Chua SK, Joung B, Han S et al (2011) Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-qt syndrome. Circ Arrhythm Electrophysiol 4:103–111

    Article  PubMed  Google Scholar 

  15. Nagy N, Szuts V, Horvath Z, Seprenyi G, Farkas AS, Acsai K et al (2009) Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol 47:656–663

    Article  PubMed  CAS  Google Scholar 

  16. Ogawa M, Morita N, Tang L, Karagueuzian HS, Weiss JN, Lin SF et al (2009) Mechanisms of recurrent ventricular fibrillation in a rabbit model of pacing-induced heart failure. Heart Rhythm 6:784–792

    Article  PubMed  Google Scholar 

  17. Patterson E, Szabo B, Scherlag BJ, Lazzara R (1990) Early and delayed afterdepolarizations associated with cesium chloride-induced arrhythmias in the dog. J Cardiovasc Pharmacol 15:323–331

    Article  PubMed  CAS  Google Scholar 

  18. Patterson E, Lazzara R, Szabo B, Liu H, Tang D, Li YH et al (2006) Sodium–calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol 47:1196–1206

    Article  PubMed  CAS  Google Scholar 

  19. Szabo B, Kovacs T, Lazzara R (1995) Role of calcium loading in early afterdepolarizations generated by Cs+ in canine and guinea pig Purkinje fibers. J Cardiovasc Electrophysiol 6:796–812

    Article  PubMed  CAS  Google Scholar 

  20. ter Keurs HE, Boyden PA (2007) Calcium and arrhythmogenesis. Physiol Rev 87:45–506

    Google Scholar 

  21. Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP et al (2000) Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 46:376–392

    Article  PubMed  CAS  Google Scholar 

  22. Wang NC, Lee MH, Ohara T, Okuyama Y, Fishbein GA, Lin SF et al (2001) Optical mapping of ventricular defibrillation in isolated swine right ventricles: demonstration of a postshock isoelectric window after near-threshold defibrillation shocks. Circulation 104:227–233

    Article  PubMed  CAS  Google Scholar 

  23. Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J et al (2003) Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J Biol Chem 278:49085–49094

    Article  PubMed  CAS  Google Scholar 

  24. Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kaab S et al (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1:93–102

    Article  PubMed  CAS  Google Scholar 

  25. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junction, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Q, Timofeyev V, Lu L, Li N, Singapuri A, Long MK et al (2008) Functional roles of a Ca2+-activated K+ channel in atrioventricular nodes. Circ Res 102:465–471

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by National Institutes of Health Grants no. P01 HL78931, R01 HL78932, and HL71140 as well as a Medtronic-Zipes endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Sheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PS., Ogawa, M., Maruyama, M. et al. Imaging Arrhythmogenic Calcium Signaling in Intact Hearts. Pediatr Cardiol 33, 968–974 (2012). https://doi.org/10.1007/s00246-012-0236-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-012-0236-5

Keywords

Navigation