Skip to main content

Advertisement

Log in

Hey bHLH Factors in Cardiovascular Development

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The Notch pathway is now firmly established as a key signaling system for embryonic cardiovascular development as well as some adult pathologies in vertebrates. We have identified Hey bHLH transcriptional repressors as critical, but partly redundant transducers of these signals. Hey proteins control cardiomyocyte differentiation, epithelial to mesenchymal transition of endocardial cells, and a number of key features of arterial endothelial cells with corresponding defects in knockout mice. While most of the phenotypes are described in embryonic development, there is increasing evidence for additional adult pathologies. Despite the functional importance of Hey proteins little is still known about their molecular targets and interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  CAS  PubMed  Google Scholar 

  2. Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

    Article  CAS  PubMed  Google Scholar 

  3. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183:129–141

    Article  CAS  PubMed  Google Scholar 

  4. Collesi C, Zentilin L, Sinagra G, Giacca M (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183:117–128

    Article  CAS  PubMed  Google Scholar 

  5. Croquelois A, Domenighetti AA, Nemir M, Lepore M, Rosenblatt-Velin N, Radtke F, Pedrazzini T (2008) Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med 205:3173–3185

    Article  CAS  PubMed  Google Scholar 

  6. Diez H, Fischer A, Winkler A, Hu CJ, Hatzopoulos AK, Breier G, Gessler M (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313:1–9

    Article  CAS  PubMed  Google Scholar 

  7. Donovan J, Kordylewska A, Jan YN, Utset MF (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12:1605–1610

    Article  CAS  PubMed  Google Scholar 

  8. Fischer A, Leimeister C, Winkler C, Schumacher N, Klamt B, Elmasri H, Steidl C, Maier M, Knobeloch KP, Amann K, Helisch A, Sendtner M, Gessler M (2002) Hey bHLH factors in cardiovascular development. Cold Spring Harb Symp Quant Biol 67:63–70

    Article  CAS  PubMed  Google Scholar 

  9. Fischer A, Klamt B, Schumacher N, Glaeser C, Hansmann I, Fenge H, Gessler M (2004) Phenotypic variability in Hey2 −/− mice and absence of HEY2 mutations in patients with congenital heart defects or Alagille syndrome. Mamm Genome 15:711–716

    Article  CAS  PubMed  Google Scholar 

  10. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911

    Article  CAS  PubMed  Google Scholar 

  11. Fischer A, Klattig J, Kneitz B, Diez H, Maier M, Holtmann B, Englert C, Gessler M (2005) Hey basic helix-loop-helix transcription factors are repressors of GATA4 and GATA6 and restrict expression of the GATA target gene ANF in fetal hearts. Mol Cell Biol 25:8960–8970

    Article  CAS  PubMed  Google Scholar 

  12. Fischer A, Steidl C, Wagner TU, Lang E, Jakob PM, Friedl P, Knobeloch KP, Gessler M (2007) Combined loss of Hey1 and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition. Circ Res 100:856–863

    Article  CAS  PubMed  Google Scholar 

  13. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274

    Article  CAS  PubMed  Google Scholar 

  14. Gessler M, Knobeloch KP, Helisch A, Amann K, Schumacher N, Rohde E, Fischer A, Leimeister C (2002) Mouse gridlock: no aortic coarctation or deficiency, but fatal cardiac defects in Hey2 −/− mice. Curr Biol 12:1601–1604

    Article  CAS  PubMed  Google Scholar 

  15. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127

    Article  CAS  PubMed  Google Scholar 

  16. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134:2709–2718

    Article  CAS  PubMed  Google Scholar 

  17. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    Article  PubMed  Google Scholar 

  18. High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9:49–61

    Article  CAS  PubMed  Google Scholar 

  19. Koibuchi N, Chin MT (2007) CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ Res 100:850–855

    Article  CAS  PubMed  Google Scholar 

  20. Kokubo H, Miyagawa-Tomita S, Tomimatsu H, Nakashima Y, Nakazawa M, Saga Y, Johnson RL (2004) Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res 95:540–547

    Article  CAS  PubMed  Google Scholar 

  21. Kokubo H, Miyagawa-Tomita S, Nakazawa M, Saga Y, Johnson RL (2005) Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev Biol 278:301–309

    Article  CAS  PubMed  Google Scholar 

  22. Kokubo H, Tomita-Miyagawa S, Hamada Y, Saga Y (2007) Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development 134:747–755

    Article  CAS  PubMed  Google Scholar 

  23. Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE (2008) Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 6:e227

    Article  PubMed  Google Scholar 

  24. le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375

    Article  PubMed  Google Scholar 

  25. le Noble F, Klein C, Tintu A, Pries A, Buschmann I (2008) Neural guidance molecules, tip cells and mechanical factors in vascular development. Cardiovasc Res 78:232–241

    Google Scholar 

  26. Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel subfamily of hairy- and enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85:173–177

    Article  CAS  PubMed  Google Scholar 

  27. Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A, Drexler H, Limbourg FP (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100:363–371

    Article  CAS  PubMed  Google Scholar 

  28. Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D (1999) HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments. Dev Biol 216:72–84

    Article  CAS  PubMed  Google Scholar 

  29. Niessen K, Karsan A (2008) Notch signaling in cardiac development. Circ Res 102:1169–1181

    Article  CAS  PubMed  Google Scholar 

  30. Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524

    Article  CAS  PubMed  Google Scholar 

  31. Rochais F, Dandonneau M, Mesbah K, Jarry T, Mattei MG, Kelly RG (2009) Hes1 is expressed in the second heart field and is required for outflow tract development. PLoS One 4:e6267

    Article  PubMed  Google Scholar 

  32. Rutenberg JB, Fischer A, Jia H, Gessler M, Zhong TP, Mercola M (2006) Developmental patterning of the cardiac atrioventricular canal by Notch and hairy-related transcription factors. Development 133:4381–4390

    Article  CAS  PubMed  Google Scholar 

  33. Sakata Y, Kamei CN, Nakagami H, Bronson R, Liao JK, Chin MT (2002) Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proc Natl Acad Sci USA 99:16197–16202

    Article  CAS  PubMed  Google Scholar 

  34. Sakata Y, Koibuchi N, Xiang F, Youngblood JM, Kamei CN, Chin MT (2006) The spectrum of cardiovascular anomalies in CHF1/Hey2 deficient mice reveals roles in endocardial cushion, myocardial and vascular maturation. J Mol Cell Cardiol 40:267–273

    Article  CAS  PubMed  Google Scholar 

  35. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104:3225–3230

    Article  CAS  PubMed  Google Scholar 

  36. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267

    Article  CAS  PubMed  Google Scholar 

  37. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115

    Article  CAS  PubMed  Google Scholar 

  38. Winkler C, Elmasri H, Klamt B, Volff JN, Gessler M (2003) Characterization of hey bHLH genes in teleost fish. Dev Genes Evol 213:541–553

    Article  CAS  PubMed  Google Scholar 

  39. Xiang F, Sakata Y, Cui L, Youngblood JM, Nakagami H, Liao JK, Liao R, Chin MT (2006) Transcription factor CHF1/Hey2 suppresses cardiac hypertrophy through an inhibitory interaction with GATA4. Am J Physiol Heart Circ Physiol 290:H1997–H2006

    Article  CAS  PubMed  Google Scholar 

  40. Xin M, Small EM, van Rooij E, Qi X, Richardson JA, Srivastava D, Nakagawa O, Olson EN (2007) Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function. Proc Natl Acad Sci USA 104:7975–7980

    Article  CAS  PubMed  Google Scholar 

  41. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104

    Article  CAS  PubMed  Google Scholar 

  42. Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG grant Ge539/11 and RVZ network (FZ-82).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Gessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiese, C., Heisig, J. & Gessler, M. Hey bHLH Factors in Cardiovascular Development. Pediatr Cardiol 31, 363–370 (2010). https://doi.org/10.1007/s00246-009-9609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9609-9

Keywords

Navigation