Skip to main content
Log in

Importance Sampling for the Empirical Measure of Weakly Interacting Diffusions

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We construct an importance sampling method for computing statistics related to rare events for weakly interacting diffusions. Standard Monte Carlo methods behave exponentially poorly with the number of particles in the system for such problems. Our scheme is based on subsolutions of a Hamilton–Jacobi–Bellman (HJB) equation on Wasserstein space which arises in the theory of mean-field (McKean–Vlasov) control. We identify conditions under which such a scheme is asymptotically optimal. In the process, we make connections between the large deviations principle for the empirical measure of weakly interacting diffusions, mean-field control, and the HJB equation on Wasserstein space. We also provide evidence, both analytical and numerical, that with sufficient regularity of the HJB equation, our scheme can have vanishingly small relative error in the many particle limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307(3), 791–815 (2011)

    MathSciNet  Google Scholar 

  2. Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: Large deviations and gradient flows. Philos. Trans. R. Soc. A 371(2005), 20120341 (2013)

    MathSciNet  Google Scholar 

  3. Babin, V., Roland, C., Sagui, C.: Adaptively biased molecular dynamics for free energy calculations. J. Chem. Phys. 128(13), 128–135 (2008)

    Google Scholar 

  4. Backhoff, J., Conforti, G., Gentil, I., Léonard, C.: The mean field Schrödinger problem: ergodic behavior, entropy estimates and functional inequalities. Probab. Theory Relat. Fields 178(2), 475–530 (2020)

    Google Scholar 

  5. Basei, M., Pham, H.: A weak martingale approach to linear-quadratic McKean–Vlasov stochastic control problems. J. Optim. Theory Appl. 181(2), 347–382 (2019)

    MathSciNet  Google Scholar 

  6. Bashiri, K., Menz, G.: Metastability in a continuous mean-field model at low temperature and strong interaction. Stoch. Process. Appl. 134, 132–173 (2021)

    MathSciNet  Google Scholar 

  7. Ben Rached, N., Haji-Ali, A.-L., Pillai, S.M.S., Tempone, R.: Multilevel importance sampling for McKean–Vlasov stochastic differential equation. arXiv:2208.03225 [math.NA] (2022)

  8. Ben Rached, N., Haji-Ali, A.-L., Pillai, S.M.S., Tempone, R.: Single level importance sampling for McKean–Vlasov stochastic differential equations. arXiv: 2207.06926 [math.NA] (2022)

  9. Bezemek, Z.W., Spiliopoulos, K.: Large deviations for interacting multiscale particle systems. Stoch. Process. Appl. 155, 27–108 (2023)

    MathSciNet  Google Scholar 

  10. Bezemek, Z.W., Spiliopoulos, K.: Moderate deviations for fully coupled multiscale weakly interacting particle systems. Stochastics and Partial Differential Equations: Analysis and Computations (2023). https://doi.org/10.1007/s40072-023-00301-0

  11. Borrell, E.R., Quer, J., Richter, L., Schütte, C.: Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics. SIAM J. Sci. Comput. (2023). https://doi.org/10.1137/22M1503464

    Article  Google Scholar 

  12. Bouchet, F., Gawȩdzki, K., Nardini, C.: Perturbative calculation of quasi-potential in non-equilibrium diffusions: a mean-field example. J. Stat. Phys. 163, 1157–1210 (2016)

    MathSciNet  Google Scholar 

  13. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998)

    MathSciNet  Google Scholar 

  14. Budhiraja, A., Conroy, M.: Asymptotic behavior of stochastic currents under large deviation scaling with mean field interaction and vanishing noise. Annali della Scuola Normale di Pisa - Classe di Scienze 23(5), 1749–1805 (2022)

    MathSciNet  Google Scholar 

  15. Budhiraja, A., Conroy, M.: Empirical measure and small noise asymptotics under large deviation scaling for interacting diffusions. J. Theor. Probab. 35, 295–349 (2022)

    MathSciNet  Google Scholar 

  16. Budhiraja, A., Dupuis, P., Fischer, M.: Large deviation properties of weakly interacting particles via weak convergence methods. Ann. Probab. 40(1), 74–100 (2012)

    MathSciNet  Google Scholar 

  17. Budhiraja, A., Wu, R.: Moderate deviation principles for weakly interacting particle systems. Probab. Theory Relat. Fields 168, 721–771 (2017)

    MathSciNet  Google Scholar 

  18. Burzoni, M., Ignazio, V., Reppen, A.M., Soner, H.M.: Viscosity solutions for controlled McKean–Vlasov jump-diffusions. SIAM J. Control Optim. 58(3), 1676–1699 (2020)

    MathSciNet  Google Scholar 

  19. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications I. Springer, New York (2018)

    Google Scholar 

  20. Carmona, R., Laurière, M.: Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II—the finite horizon case. Ann. Appl. Probab. 32(6), 4065–4105 (2022)

    MathSciNet  Google Scholar 

  21. Chassagneux, J.F., Crisan, D., Delarue, F.: A probabilistic approach to classical solutions of the master equation for large population equilibria. Memoirs of the American Mathematical Society (2022) 280, 1379. https://doi.org/10.1090/memo/1379

  22. Chassagneux, J.F., Crisan, D., Delarue, F.: Numerical method for FBSDEs of McKean–Vlasov type. Ann. Appl. Probab. 29(3), 1640–1684 (2019)

    MathSciNet  Google Scholar 

  23. Chaudru de Raynal, P.E., Frikha, N.: Well-posedness for some non-linear diffusion processes and related PDE on the Wasserstein space. Journal de Mathematiques Pures et Appliquees 159, 1–167 (2022)

    Google Scholar 

  24. Chaintron, L.P., Diez, A.: Propagation of chaos: a review of models, methods and applications. I. Models and methods. Kinet. Relat. Models 15(6), 895–1015 (2022)

    MathSciNet  Google Scholar 

  25. Comer, J., Gumbart, J.C., Hénin, J., Lelièvre, T., Pohorille, A., Chipot, C.: The adaptive biasing force method: everything you always wanted to know but were afraid to ask. J. Phys. Chem. B 118(3), 1129–1151 (2015)

    Google Scholar 

  26. Cosso, A., Gozzi, F., Kharroubi, I., Pham, H., Rosestolato, M.: Master Bellman equation in the Wasserstein space: uniqueness of viscosity solutions. Trans. Am. Math. Soc. (2023). https://doi.org/10.1090/tran/8986

    Article  Google Scholar 

  27. Cosso, A., Gozzi, F., Kharroubi, I., Pham, H., Rosestolato, M.: Optimal control of path-dependent McKean–Vlasov SDEs in infinite dimension. Ann. Appl. Probab. 33(4), 2863–2918 (2023)

    MathSciNet  Google Scholar 

  28. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983)

    MathSciNet  Google Scholar 

  29. Dawson, D.A., Gärtner, J.: Large deviations from the Mckean–Vlasov limit for weakly interacting diffusions. Stochastics 20(4), 247–308 (1987)

    MathSciNet  Google Scholar 

  30. Del Moral, P., Guionnet, A.: Large deviations for interacting particle systems: applications to non-linear filtering. Stoch. Process. Appl. 78(1), 69–95 (1998)

    MathSciNet  Google Scholar 

  31. Delarue, F., Lacker, D., Ramanan, K.: From the master equation to mean field game limit theory: large deviations and concentration of measure. Ann. Probab. 48(1), 211–263 (2020)

    MathSciNet  Google Scholar 

  32. dos Reis, G., Salkeld, W., Tugaut, J.: Freidlin–Wentzell LDP in path space for McKean–Vlasov equations and the functional iterated logarithm law. Ann. Probab. 29(3), 1487–1540 (2019)

    MathSciNet  Google Scholar 

  33. dos Reis, G., Smith, G., Tankov, P.: Importance sampling for McKean–Vlasov SDEs. Appl. Math. Comput. (2023). https://doi.org/10.1016/j.amc.2023.128078

    Article  MathSciNet  Google Scholar 

  34. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Google Scholar 

  35. Dupuis, P., Spiliopoulos, K., Zhou, X.: Escaping from an attractor: importance sampling and rest points I. Ann. Appl. Probab. 25(5), 2909–2958 (2015)

    MathSciNet  Google Scholar 

  36. Dupuis, P., Spiliopoulos, K., Wang, H.: Importance sampling for multiscale diffusions. Multiscale Model. Simul. 10(1), 1–27 (2012)

    MathSciNet  Google Scholar 

  37. Dupuis, P., Wang, H.: Importance sampling, large deviations, and differential games. Stoch. Stoch. Rep. 76(6), 481–508 (2004)

    MathSciNet  Google Scholar 

  38. Dupuis, P., Wang, H.: Subsolutions of an Isaacs equation and efficient schemes for importance sampling. Math. Oper. Res. 32(3), 723–757 (2007)

    MathSciNet  Google Scholar 

  39. E, W., Ren, W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57(5), 637–656 (2004)

    MathSciNet  Google Scholar 

  40. Ebener, L., Margazoglou, G., Friedrich, J., Biferale, L., Grauer, R.: Instanton based importance sampling for rare events in stochastic PDEs. Chaos 29(6), 063102 (2019)

    MathSciNet  Google Scholar 

  41. Feng, J., Katsoulakis, M.: A comparison principle for Hamilton–Jacobi equations related to controlled gradient flows in infinite dimensions. Arch. Ration. Mech. Anal. 192, 275–310 (2009)

    MathSciNet  Google Scholar 

  42. Feng, J., Kurtz, G.: Large Deviations for Stochastic Processes. American Mathematical Society, Providence (2006)

    Google Scholar 

  43. Feng, J., Mikami, T., Zimmer, J.: A Hamilton–Jacobi PDE associated with hydrodynamic fluctuations from a nonlinear diffusion equation. Commun. Math. Phys. 385, 1–54 (2021)

    MathSciNet  Google Scholar 

  44. Feng, J., Nguyen, T.: Hamilton–Jacobi equations in space of measures associated with a system of conservation laws. Journal de Mathématiques Pures et Appliquées 97(4), 318–390 (2012)

    MathSciNet  Google Scholar 

  45. Fischer, M.: On the form of the large deviation rate function for the empirical measures of weakly interacting systems. Bernoulli 20(4), 1765–1801 (2014)

    MathSciNet  Google Scholar 

  46. Fleming, W.H., James, M.R.: Asymptotic series and exit time probabilities. Ann. Probab. 20(3), 1369–1384 (1992)

    MathSciNet  Google Scholar 

  47. Fouque, J.P., Zhang, Z.: Deep learning methods for mean field control problems with delay. Front. Appl. Math. Stat. 12, 1369–1384 (2020)

    Google Scholar 

  48. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Heidelberg (2012)

    Google Scholar 

  49. Garnier, J., Papanicolaou, G., Yang, T.W.: Large deviations for a mean field model of systemic risk. SIAM J. Financ. Math. 4(1), 151–184 (2013)

    MathSciNet  Google Scholar 

  50. Garnier, J., Papanicolaou, G., Yang, T.W.: Consensus convergence with stochastic effects. Vietnam J. Math. 45, 51–75 (2017)

    MathSciNet  Google Scholar 

  51. Gasteratos, I., Salins, M., Spiliopoulos, K.: Importance sampling for stochastic reaction-diffusion equations in the moderate deviation regime. arXiv:2206.00646 [math.PR] (2022)

  52. Gavish, N., Nyquist, P., Peletier, M.: Large deviations and gradient flows for the Brownian one-dimensional hard-rod system. Potential Anal. 58, 71–121 (2021)

    MathSciNet  Google Scholar 

  53. Geha, M., Jacquier, A., Žurič, Ž.: Large and moderate deviations for importance sampling in the Heston model. SSRN Electronic Journal (2021). https://doi.org/10.2139/ssrn.3952672

  54. Germain, M., Laurière, M., Pham, H., Warin, X.: DeepSets and their derivative networks for solving symmetric PDEs. J. Sci. Comput. 91, 63 (2022)

    MathSciNet  Google Scholar 

  55. Germain, M., Mikael, J., Warin, X.: Numerical resolution of McKean–Vlasov FBSDEs using neural networks. Methodol. Comput. Appl. Probab. 24, 2557–2586 (2022)

    MathSciNet  Google Scholar 

  56. Germain, M., Pham, H., Warin, X.: Rate of convergence for particle approximation of PDEs in Wasserstein space. J. Appl. Probab. 59(4), 992–1008 (2022)

    MathSciNet  Google Scholar 

  57. Grafke, T., Schäfer, T., Vanden-Eijnden, E.: Sharp asymptotic estimates for expectations, probabilities, and mean first passage times in stochastic systems with small noise. Commun. Pure Appl. Math. (2023). https://doi.org/10.1002/cpa.22177 10

  58. Grünbaum, F.A.: Propagation of chaos for the Boltzmann equation. Arch. Ration. Mech. Anal. 42, 323–345 (1971)

    MathSciNet  Google Scholar 

  59. Gvalani, R.S., Schlichting, A.: Barriers of the McKean–Vlasov energy via a mountain pass theorem in the space of probability measures. J. Funct. Anal. 279(11), 437–461 (2020)

    MathSciNet  Google Scholar 

  60. Han, J., Hu, R., Long, J.: Learning high-dimensional McKean–Vlasov forward-backward stochastic differential equations with general distribution dependence. arXiv:2204.11924 [math.OC] (2022)

  61. Hartmann, C., Banisch, R., Sarich, M., Badowski, T., Schütte, C.: Characterization of rare events in molecular dynamics. Entropy 16(1), 350–376 (2014)

    MathSciNet  Google Scholar 

  62. Hartmann, C., Richter, L.: Nonasymptotic bounds for suboptimal importance sampling. arXiv: 2102.09606 [math.ST] (2021)

  63. Kac, M.: Probability and Related Topics in Physical Sciences. American Mathematical Society, Providence (1957)

    Google Scholar 

  64. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New York (1998)

    Google Scholar 

  65. Lacker, D.: Limit theory for controlled McKean–Vlasov dynamics. SIAM J. Control Optim. 55(3), 1641–1672 (2017)

    MathSciNet  Google Scholar 

  66. Laurière, M.: Numerical methods for mean field games and mean field type control. Proc. Symp. Appl. Math. 78, 221–282 (2021)

    MathSciNet  Google Scholar 

  67. Laurièr, M., Pironneau, O.: Dynamic programming for mean-field type control. J. Optim. Theory Appl. 169, 902–924 (2016)

    MathSciNet  Google Scholar 

  68. Liu, W., Song, Y., Zhai, J., Zhang, T.: Large and moderate deviation principles for McKean–Vlasov SDEs with jumps. Potential Anal. 59(3), 1141–1190 (2023)

    MathSciNet  Google Scholar 

  69. Morse, M.R., Spiliopoulos, K.: Importance sampling for slow-fast diffusions based on moderate deviations. SIAM J. Multiscale Model. Simul. 18(1), 315–350 (2020)

    MathSciNet  Google Scholar 

  70. Nilsson, V., Nyquist, P.: A note on large deviations for interacting particle dynamics for finding mixed equilibria in zero-sum games. arXiv:2206.15177 [stat.ML] (2022)

  71. Nüsken, N., Richter, L.: Solving high-dimensional Hamilton–Jacobi–Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space. Part. Differ. Equ. Appl. 2, 48 (2021)

    MathSciNet  Google Scholar 

  72. Orrieri, C.: Large deviations for interacting particle systems: joint mean-field and small-noise limit. Electron. J. Probab. 25, 1–44 (2020)

    MathSciNet  Google Scholar 

  73. Pham, H., Wei, X.: Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM: Control Optim. Calc. Var. 24(1), 437–461 (2018)

    MathSciNet  Google Scholar 

  74. Salins, M., Spiliopoulos, K.: Rare event simulation via importance sampling for linear SPDE’s. Stoch. Part. Differ. Equ.: Anal. Comput. 5(4), 652–690 (2017)

    MathSciNet  Google Scholar 

  75. Spiliopoulos, K.: Nonasymptotic performance analysis of importance sampling schemes for small noise diffusions. J. Appl. Probab. 53(3), 797–810 (2015)

    MathSciNet  Google Scholar 

  76. Talbi, M., Touzi, N., Zhang, J.: Dynamic programming equation for the mean field optimal stopping problem. SIAM J. Control Optim. 61(4), 2140–2164 (2023)

    MathSciNet  Google Scholar 

  77. Tong, S., Stadler, G.: Large deviation theory-based adaptive importance sampling for rare events in high dimensions. SIAM/ASA J. Uncertain. Quant. 11(3), 788–813 (2023)

    MathSciNet  Google Scholar 

  78. Valsson, O., Tiwary, P., Parrinello, M.: Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 67, 159–184 (2016)

    Google Scholar 

  79. Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Commun. Pure Appl. Math. 65(12), 1770–1803 (2012)

    MathSciNet  Google Scholar 

  80. Yong, J.: Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51(4), 2809–2838 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Bezemek was partially supported by NSF-DMS 2107856. Heldman was partially supported by NSF-DMS 1902854, ARO W911NF-20-1-0244, and a subgrant of NSF-OAC 2139536. The funding agencies are not expected to gain or lose financially through publication of this manuscript. The authors have no relevant financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Bezemek.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z.W.B. was partially supported by the National Science Foundation (DMS 2107856). The majority of this work was completed while Z.W.B. was a PhD candidate at Boston University. M.H. was partially supported by NSF-DMS 1902854, ARO W911NF-20-1-0244, and a subgrant of NSF-OAC 2139536. The authors of the paper would like to thank both reviewers for a their careful and constructive reviews of this article.

Appendix A. Differentiation on Spaces of Measures

Appendix A. Differentiation on Spaces of Measures

Definition A.1

Given a function \(u:\mathcal { P}_2(\mathbb {R}^d)\rightarrow \mathbb {R}\), we may define a lifting of u to \(\tilde{u}:L^2({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}};\mathbb {R}^d)\rightarrow \mathbb {R}\) via \({\tilde{u}} (X) = u(\mathcal { L}(X))\) for \(X\in L^2({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}};\mathbb {R}^d)\). Here we assume \({\tilde{\Omega }}\) is a Polish space, \({\tilde{\mathcal {F}}}\) its Borel \(\sigma \)-field, and \({\tilde{\mathbb {P}}}\) is an atomless probability measure (since \({\tilde{\Omega }}\) is Polish, this is equivalent to every singleton having zero measure).

Here:

$$\begin{aligned} \mathcal { P}_2(\mathbb {R}^d) {:}{=}\lbrace \mu \in \mathcal { P}(\mathbb {R}^d): \int _{\mathbb {R}^d}|x|^2 \mu (dx)<\infty \rbrace . \end{aligned}$$

\(\mathcal { P}_2(\mathbb {R}^d)\) is a Polish space under the \(L^2\)-Wasserstein distance

$$\begin{aligned} \mathbb {W}_2 (\mu _1,\mu _2){:}{=}\inf _{\pi \in \mathcal { C}_{\mu _1,\mu _2}} \biggl [\int _{\mathbb {R}^d\times \mathbb {R}^d} |x-y|^2 \pi (dx,dy)\biggr ]^{1/2}, \end{aligned}$$

where \(\mathcal { C}_{\mu _1,\mu _2}\) denotes the set of all probability measures on \(\mathbb {R}^{d}\times \mathbb {R}^d\) with first marginal \(\mu _1\) and second marginal \(\mu _2\).

We say u is L-differentiable or Lions-differentiable at \(\mu _0\in \mathcal { P}_2(\mathbb {R}^d)\) if there exists a random variable \(X_0\) on some \(({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}})\) satisfying the above assumptions such that \(\mathcal { L}(X_0)=\mu _0\) and \({\tilde{u}}\) is Fréchet differentiable at \(X_0\).

The Fréchet derivative of \({\tilde{u}}\) can be viewed as an element of \(L^2({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}};\mathbb {R}^d)\) by identifying \(L^2({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}};\mathbb {R}^d)\) and its dual. From this, one can find that if u is L-differentiable at \(\mu _0\in \mathcal { P}_2(\mathbb {R}^d)\), there is a deterministic measurable function \(\xi : \mathbb {R}^d\rightarrow \mathbb {R}^d\) such that \(D\tilde{u}(X_0)=\xi (X_0)\), and that \(\xi \) is uniquely defined \(\mu _0\)-almost everywhere on \(\mathbb {R}^d\). We denote this equivalence class of \(\xi \in L^2(\mathbb {R}^d,\mu _0;\mathbb {R}^d)\) by \(\partial _\mu u(\mu _0)\) and call \(\partial _\mu u(\mu _0)[\cdot ]:\mathbb {R}^d\rightarrow \mathbb {R}^d\) the Lions derivative of u at \(\mu _0\). Note that this definition is independent of the choice of \(X_0\) and \(({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}})\). See [19] Section 5.2.

To avoid confusion when u depends on more variables than just \(\mu \), if \(\partial _\mu u(\mu _0)\) is differentiable at \(z_0\in \mathbb {R}^d\), we denote its derivative at \(z_0\) by \(\partial _z\partial _\mu u(\mu _0)[z_0]\).

Definition A.2

([19] Definition 5.83) We say \(u:\mathcal { P}_2(\mathbb {R}^d)\rightarrow \mathbb {R}\) is Fully \(\mathbf {C^2}\) if the following conditions are satisfied:

  1. (1)

    u is \(C^1\) in the sense of L-differentiation, and its first derivative has a jointly continuous version \(\mathcal { P}_2(\mathbb {R}^d)\times \mathbb {R}^d\ni (\mu ,z)\mapsto \partial _\mu u(\mu )[z]\in \mathbb {R}^d\).

  2. (2)

    For each fixed \(\mu \in \mathcal { P}_2(\mathbb {R}^d)\), the version of \(\mathbb {R}^d\ni z\mapsto \partial _\mu u(\mu )[z]\in \mathbb {R}^d\) from the first condition is differentiable on \(\mathbb {R}^d\) in the classical sense and its derivative is given by a jointly continuous function \(\mathcal { P}_2(\mathbb {R}^d)\times \mathbb {R}^d\ni (\mu ,z)\mapsto \partial _z\partial _\mu u(\mu )[z]\in \mathbb {R}^{d\times d}\).

  3. (3)

    For each fixed \(z\in \mathbb {R}^d\), the version of \(\mathcal { P}_2(\mathbb {R}^d)\ni \mu \mapsto \partial _\mu u(\mu )[z]\in \mathbb {R}^d\) in the first condition is continuously L-differentiable component-by-component, with a derivative given by a function \(\mathcal { P}_2(\mathbb {R}^d)\times \mathbb {R}^d\times \mathbb {R}^d\ni (\mu ,z,z')\mapsto \partial ^2_\mu u(\mu )[z][z']\in \mathbb {R}^{d\times d}\) such that for any \(\mu \in \mathcal { P}_2(\mathbb {R}^d)\) and \(X\in L^2({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}};\mathbb {R}^d)\) with \(\mathcal { L}(X)=\mu \), \(\partial ^2_{\mu }u(\mu )[z][X]\) gives the Fréchet derivative at X of \(L^2({\tilde{\Omega }},{\tilde{\mathcal {F}}},{\tilde{\mathbb {P}}};\mathbb {R}^d)\ni X'\mapsto \partial _\mu u(\mathcal { L}(X'))[z]\) for every \(z\in \mathbb {R}^d\). Denoting \(\partial ^2_\mu u(\mu )[z][z']\) by \(\partial ^2_\mu u(\mu )[z,z']\), the map \(\mathcal { P}_2(\mathbb {R}^d)\times \mathbb {R}^d\times \mathbb {R}^d\ni (\mu ,z,z')\mapsto \partial ^2_\mu u(\mu )[z,z']\) is also assumed to be continuous in the product topology.

We recall now a useful connection between the Lions derivative as defined in A.1 and the empirical measure.

Proposition A.3

For \(g:\mathcal { P}_2(\mathbb {R}^d)\rightarrow \mathbb {R}\) which is fully \(C^2\) in the sense of definition A.2, we can define the empirical projection of g, as \(g^N: (\mathbb {R}^d)^N\rightarrow \mathbb {R}\) given by

$$\begin{aligned} g^N(x_1,...,x_N){:}{=}g\left( \frac{1}{N}\sum _{i=1}^N \delta _{x_i}\right) . \end{aligned}$$

Then \(g^N\) is twice differentiable on \((\mathbb {R}^d)^N\), and for each \(x_1,..,x_N\in \mathbb {R}^d\), \((i,j)\in \lbrace 1,...,N \rbrace ^2\):

$$\begin{aligned} \partial _{x_i} g^N(x_1,...,x_N)= \frac{1}{N} \partial _\mu g\left( \frac{1}{N}\sum _{i=1}^N \delta _{x_i}\right) [x_i] \end{aligned}$$
(64)

and

$$\begin{aligned} \partial _{x_i} \partial _{x_j} g^N(x_1,...,x_N)&= \frac{1}{N} \partial _z \partial _\mu g\left( \frac{1}{N}\sum _{i=1}^N \delta _{x_i}\right) [x_i] \mathbbm {1}_{i=j} \nonumber \\&\quad + \frac{1}{N^2} \partial ^2_\mu g\left( \frac{1}{N}\sum _{i=1}^N \delta _{x_i}\right) [x_i,x_j]. \end{aligned}$$
(65)

Proof

This follows from Propositions 5.35 and 5.91 of [19]. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezemek, Z.W., Heldman, M. Importance Sampling for the Empirical Measure of Weakly Interacting Diffusions. Appl Math Optim 89, 7 (2024). https://doi.org/10.1007/s00245-023-10075-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10075-5

Keywords

Mathematics Subject Classification

Navigation