Skip to main content
Log in

Strong Stationarity Conditions for the Optimal Control of a Cahn–Hilliard–Navier–Stokes System

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is concerned with the distributed optimal control of a time-discrete Cahn–Hilliard–Navier–Stokes system with variable densities. It focuses on the double-obstacle potential which yields an optimal control problem for a variational inequality of fourth order and the Navier–Stokes equation. The existence of solutions to the primal system and of optimal controls is established. The Lipschitz continuity of the constraint mapping is derived and used to characterize the directional derivative of the constraint mapping via a system of variational inequalities and partial differential equations. Finally, strong stationarity conditions are presented following an approach from Mignot and Puel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15, 453–480 (2013)

    Article  MathSciNet  Google Scholar 

  2. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22, 1150013 (2012)

    Article  MathSciNet  Google Scholar 

  3. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Academic Press, Amsterdam (2003)

  4. Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Meth. Fluids 73, 344–361 (2013)

    Article  Google Scholar 

  5. Aland, S., Lowengrub, J., Voigt, A.: Particles at fluid-fluid interfaces: a new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model. Phys. Rev. E 86, 046321 (2012)

    Article  Google Scholar 

  6. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41–68 (2002)

    Article  Google Scholar 

  7. Boyer, F., Chupin, L., Fabrie, P.: Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model. Eur. J. Mech. B. Fluids 23, 759–780 (2004)

    Article  MathSciNet  Google Scholar 

  8. Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control. Optim. 53, 2696–2721 (2015)

    Article  MathSciNet  Google Scholar 

  9. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous cahn-hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 73, 195–225 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 2078–2095 (2007)

    Article  Google Scholar 

  11. Eckert, S., Nikrityuk, P.A., Willers, B., Räbiger, D., Shevchenko, N., Neumann-Heyme, H., Travnikov, V., Odenbach, S., Voigt, A., Eckert, K.: Electromagnetic melt flow control during solidification of metallic alloys. Eur. Phys. J. 220, 123–137 (2013)

    Google Scholar 

  12. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions. SIAM J. Control. Optim. 54, 221–250 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401–436 (2010)

  14. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice–a survey. Automatica 25, 335–348 (1989)

    Article  Google Scholar 

  15. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99, 151–171 (2016)

    Article  MathSciNet  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224. Springer, Berlin (1977). Grundlehren der Mathematischen Wissenschaften

  17. Hintermüller, M., Hinze, M., Tber, M.H.: An adaptive finite-element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem. Optim. Methods Softw. 26, 777–811 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hintermüller, M., Keil, T., Wegner, D.: Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system with nonmatched fluid densities. SIAM J. Control. Optim. 55, 1954–1989 (2017)

    Article  MathSciNet  Google Scholar 

  19. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: \(C\)- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20, 868–902 (2009)

    Article  MathSciNet  Google Scholar 

  20. Hintermüller, M., Mordukhovich, B.S., Surowiec, T.M.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146, 555–582 (2014)

    Article  MathSciNet  Google Scholar 

  21. Hintermüller, M., Surowiec, T.: A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Math. Program. 160, 271–305 (2016)

    Article  MathSciNet  Google Scholar 

  22. Hintermüller, M., Wegner, D.: Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control. Optim. 50, 388–418 (2012)

    Article  MathSciNet  Google Scholar 

  23. Hintermüller, M., Wegner, D.: Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system. SIAM J. Control. Optim. 52, 747–772 (2014)

    Article  MathSciNet  Google Scholar 

  24. Hinze, M.: Optimal and instantaneous control of the instationary Navier-Stokes equations (1999). Habilitationsschrift

  25. Hinze, M., Kahle, C.: A nonlinear model predictive concept for control of two-phase flows governed by the Cahn-Hilliard Navier-Stokes system. In: System Modeling and Optimization, vol. 391 of IFIP Adv. Inf. Commun. Technol., pp. 348–357. Springer, Heidelberg (2013)

  26. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977)

    Article  Google Scholar 

  27. Jarušek, J., Krbec, M., Rao, M., Sokołowski, J.: Conical differentiability for evolution variational inequalities. J. Differ. Equ. 193, 131–146 (2003)

    Article  MathSciNet  Google Scholar 

  28. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MathSciNet  Google Scholar 

  29. Kim, J., Lowengrub, J.: Interfaces and Multicomponent Fluids, Encyclopedia of Mathematical Physics, pp. 135–144 (2004)

  30. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. A 454, 2617–2654 (1998)

    Article  MathSciNet  Google Scholar 

  31. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  32. Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Mathematical Research, vol. 109. Wiley, Berlin (2000)

  33. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)

    Article  Google Scholar 

  34. Mignot, F., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control. Optim. 22, 466–476 (1984)

    Article  MathSciNet  Google Scholar 

  35. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II. Applications, vol. 331 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2006)

  36. Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A 38, 434 (1988)

    Article  Google Scholar 

  37. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results, vol. 28 of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (1998)

  38. Praetorius, S., Voigt, A.: A navier-stokes phase-field crystal model for colloidal suspensions. J. Chem. Phys. 142, 154904 (2015)

    Article  Google Scholar 

  39. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MathSciNet  Google Scholar 

  40. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  Google Scholar 

  41. Shapiro, A.: On concepts of directional differentiability. J. Optim. Theory Appl. 66, 477–487 (1990)

    Article  MathSciNet  Google Scholar 

  42. Tachim Medjo, T.: Optimal control of a Cahn-Hilliard-Navier-Stokes model with state constraints. J. Convex Anal. 22, 1135–1172 (2015)

    MathSciNet  Google Scholar 

  43. Wang, Q.-F., Nakagiri, S.-I.: Weak Solutions of Cahn-Hilliard Equations Having Forcing Terms and Optimal Control Problems: Mathematical Models in Functional Equations (Japanese) (Kyoto, 1999), Sūrikaisekikenkyūsho Kōkyūroku, pp. 172–180 (2000)

  44. Yong, J.M., Zheng, S.M.: Feedback stabilization and optimal control for the Cahn-Hilliard equation. Nonlinear Anal. 17, 431–444 (1991)

    Article  MathSciNet  Google Scholar 

  45. Zhou, B., et al.: Simulations of polymeric membrane formation in 2D and 3D. PhD thesis, Massachusetts Institute of Technology (2006)

  46. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Funding was provided by Deutsche Forschungsgemeinschaft (Grant No. SPP-1962), DFG-Research Center MATHEON (Grant No. C-SE5), and Einstein Stiftung Berlin (Grant No. ECMATH: D-OT1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hintermüller.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the German Research Foundation DFG through the SPP 1506 and the SPP1962 and by the Research Center MATHEON through project C-SE5 and D-OT1 funded by the Einstein Center for Mathematics Berlin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hintermüller, M., Keil, T. Strong Stationarity Conditions for the Optimal Control of a Cahn–Hilliard–Navier–Stokes System. Appl Math Optim 89, 12 (2024). https://doi.org/10.1007/s00245-023-10063-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10063-9

Keywords

Mathematics Subject Classification

Navigation