Skip to main content
Log in

Semidiscrete Shocks for the Full Velocity Difference Model

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we consider the full velocity difference model for traffic flow and we study the existence and uniqueness of traveling wave solutions. First, using the monotony of the car’s interdistance, we derive necessary conditions for the existence of such solutions. Then, in the framework of viscosity solutions, we construct a traveling wave solution by considering an approximate non-local Hamilton–Jacobi equation on a bounded domain. This traveling wave solution can be interpreted as a phase transition between a congested state and a free-flow one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Haj, M., Forcadel, N., Monneau, R.: Existence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova models. Arch. Ration. Mech. Anal. 210, 45–99 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035 (1995)

    Article  Google Scholar 

  3. Barles, G.: An introduction to the theory of viscosity solutions for first-order Hamilton–Jacobi equations and applications. In Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, pp. 49–109. Springer, New York (2013)

  4. Batista, M., Twrdy, E.: Optimal velocity functions for car-following models. J. Zhejiang Univ. Sci. A 11, 520–529 (2010)

    Article  MATH  Google Scholar 

  5. Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. F 2, 181–196 (1999)

    Article  Google Scholar 

  6. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, L.: Modifications of the optimal velocity traffic model to include delay due to driver reaction time. Physica A 319, 557–567 (2003)

    Article  MATH  Google Scholar 

  9. Droniou, J., Imbert, C.: Solutions de Viscosité et Solutions Variationnelle pour EDP Non-Linéaires. https://cyrilimbert.files.wordpress.com/2013/10/cours-m2.pdf (2002)

  10. Forcadel, N., Imbert, C., Monneau, R.: Homogenization of fully overdamped Frenkel-Kontorova models. J. Differ. Equ. 246, 1057–1097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forcadel, N., Imbert, C., Monneau, R.: Homogenization of accelerated Frenkel-Kontorova models with n types of particles. Trans. Am. Math. Soc. 364, 6187–6227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forcadel, N., Salazar, W.: Homogenization of second order discrete model and application to traffic flow. Differ. Integral Equ. 28, 1039–1068 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Forcadel, N., Salazar, W., Zaydan, M.: Homogenization of second order discrete model with local perturbation and application to traffic flow. Discret. Contin. Dyn. Syst. 37, 1437–1487 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forcadel, N., Salazar, W., Zaydan, M.: Specified homogenization of a discrete traffic model leading to an effective junction condition. Commun. Pure Appl. Anal. 17, 2173 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghorbel, A., Monneau, R.: Existence and nonexistence of semidiscrete shocks for a car-following model in traffic flow. SIAM J. Math. Anal. 46, 3612–3639 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133 (1998)

    Article  Google Scholar 

  17. Ishii, H.: Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369–384 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, G.-S., Yu, S.-H.: Discrete shocks for finite difference approximations to scalar conservation laws. SIAM J. Numer. Anal. 35, 749–772 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  20. Leclercq, L., Laval, J., Chevallier, E., et al.: The Lagrangian coordinates and what it means for first order traffic flow models. Transp. Traffic Theory 735–753 (2007)

  21. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A 229, 317–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, T.-P., Yu, S.-H.: Continuum shock profiles for discrete conservation laws I: construction. Commun. Pure Appl. Math. 52, 85–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Majda, A., Ralston, J.: Discrete shock profiles for systems of conservation laws. Commun. Pure Appl. Math. 32, 445–482 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Michelson, D.: Discrete shocks for difference approximations to systems of conservation laws. Adv. Appl. Math. 5, 433–469 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Newell, G.F.: Nonlinear effects in the dynamics of car following. Oper. Res. 9, 209–229 (1961)

    Article  MATH  Google Scholar 

  26. Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953)

    Article  MathSciNet  Google Scholar 

  27. Ridder, J., Shen, W.: Traveling waves for nonlocal models of traffic flow. Discret. Contin. Dyn. Syst. 39, 4001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serre, D.: Remarks about the discrete profiles of shock waves. https://www.mat.unb.br/~matcont/11_9.pdf (1995)

  29. Shen, W.: Traveling wave profiles for a follow-the-leader model for traffic flow with rough road condition. Netw. Heterog. Med. 13, 449–478 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, W., Shikh-Khalil, K.: Traveling waves for a microscopic model of traffic flow. Discret. Contin. Dyn. Syst. 38, 2571 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Treiber, M., Hennecke, A., Helbing, D.: Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model. Phys. Rev. E 59, 239 (1999)

    Article  Google Scholar 

Download references

Funding

This research was funded, partially, by l’Agence Nationale de la Recherche (ANR), project ANR-22-CE40-0010. For the purpose of open access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdouh Zaydan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khatib, N., Forcadel, N. & Zaydan, M. Semidiscrete Shocks for the Full Velocity Difference Model. Appl Math Optim 88, 56 (2023). https://doi.org/10.1007/s00245-023-10029-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10029-x

Keywords

Mathematics Subject Classification

Navigation