Skip to main content
Log in

Convex and Nonconvex Sweeping Processes with Velocity Constraints: Well-Posedness and Insights

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we study some classes of sweeping processes with velocity constraints in the moving set. In addition to the solution existence and the solution uniqueness for the case of a moving convex constraint set, some results on the solution existence and the solution multiplicity where the constraint set is a finite union of disjoint convex sets are also obtained. Our main tool is a theorem on the solution sensitivity of parametric variational inequalities. Beside the traditional requirement that the constraint set moves continuously in the Hausdorff distance sense, we intensively use a new assumption on the local Lipschitz-likeness of the constraint set-valued mapping. The obtained results are compared with the existing ones and analyzed by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adly, S.: A Variational Approach to Nonsmooth Dynamics. Applications in Unilateral Mechanics and Electronics, Springer Briefs in Mathematics. Springer, Cham (2017)

    MATH  Google Scholar 

  2. Adly, S.: A coderivative approach to the robust stability of composite parametric variational systems: applications in nonsmooth mechanics. J. Optim. Theory Appl. 180, 62–90 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Adly, S., Outrata, J.V.: Qualitative stability of a class of non-monotone variational inclusions. Application in electronics. J. Convex Anal. 20, 43–66 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Adly, S., Haddad, T.: An implicit sweeping process approach to quasistatic evolution variational inequalities. SIAM J. Math. Anal. 50, 761–778 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Adly, S., Le, B.K.: On semicoercive sweeping process with velocity constraint. Optim. Lett. 12, 831–843 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Adly, S., Haddad, T.: On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discret. Contin. Dyn. Syst. 6, 1791–1801 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Adly, S., Haddad, T., Thibault, L.: Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities. Math. Program. 148(Ser. B), 5–47 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Adly, S., Nacry, F., Thibault, L.: Preservation of prox-regularity of sets with applications to constrained optimization. SIAM J. Optim. 26, 448–473 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Aubin, J.-P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9, 87–111 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  11. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  12. Bounkhel, M.: Existence and uniqueness of some variants of nonconvex sweeping processes. J. Nonlinear Convex Anal. 8, 311–323 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Bounkhel, M.: Regularity Concepts in Nonsmooth Analysis. Springer, New York (2012)

    MATH  Google Scholar 

  14. Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6, 359–374 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Google Scholar 

  16. Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations, Translated from the 1990 French original by Yvan Martel and revised by the authors. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  17. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

    MathSciNet  MATH  Google Scholar 

  18. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  19. Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 99–182. International Press, Somerville, MA (2010)

    MATH  Google Scholar 

  20. Dien, P.H., Yen, N.D.: On implicit function theorems for set-valued maps and their application to mathematical programming under inclusion constraints. Appl. Math. Optim. 24, 35–54 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Diestel, J., Uhl, J.J., Jr.: Vector Measures. American Mathematical Society, Providence, RI (1977)

    MATH  Google Scholar 

  22. Dontchev, A.L., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6, 1087–1105 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    MATH  Google Scholar 

  24. Edmond, J.F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusions with perturbation. J. Differ. Equ. 226, 135–179 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Huong, N.T.T., Yao, J.-C., Yen, N.D.: Geoffrion’s proper efficiency in linear fractional vector optimization with unbounded constraint sets. J. Global Optim. 78, 545–562 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Huy, N.Q., Yen, N.D.: Minimax variational inequalities. Acta Math. Vietnam. 36, 265–281 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Jourani, A., Vilches, E.: A differential equation approach to implicit sweeping processes. J. Differ. Equ. 266, 5168–5184 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press Inc, New York (1980)

    MATH  Google Scholar 

  29. Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Courier Corporation, North Chelmsford (1975)

    Google Scholar 

  30. Krejčí, P., Monteiro, G.A., Recupero, V.: Explicit and implicit non-convex sweeping processes in the space of absolutely continuous functions. Appl. Math. Optim. 84(suppl. 2), 1477–1504 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Kunze, M., Marques, M.D.P.M.: On the discretization of degenerate sweeping processes. Port. Math. 55, 219–232 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Kunze, M., Marques, M.D.P.M.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems Analysis and Modelling, pp. 1–60. Springer, Berlin (2000)

    Google Scholar 

  33. Marques, M.D.P.M.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction, vol. 9. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  34. Maury, B., Venel, J.: A mathematical framework for a crowd motion model. C. R. Math. Acad. Sci. Paris 346, 1245–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Maury, B., Venel, J.: A discrete contact model for crowd motion ESAIM. Math. Model. Numer. Anal. 45, 145–168 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Maury, B., Faure, S.: Crowds in Equations: An Introduction to the Microscopic Modeling of Crowds. Advanced Textbooks In Mathematics. World Scientific Europe Ltd., Singapore (2018)

    MATH  Google Scholar 

  37. Migórski, S., Sofonea, M., Zeng, S.: Well-posedness of history-dependent sweeping processes. SIAM J. Math. Anal. 51, 1082–1107 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Vol. I: Basic Theory. Vol. II: Applications. Springer, Berlin (2006)

  39. Mordukhovich, B.S.: Variational Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham (2018)

    Google Scholar 

  40. Moreau, J.J.: Sur l’évolution d’un système élastoplastique, C. R. Acad. Sci. Paris Sér. A-B 273, A118–A121 (1971)

    Google Scholar 

  41. Moreau, J.J.: Rafle par un convexe variable I, Séminarie Analyse Convexe Montpellier (1971), Exposé 15

  42. Moreau, J.J.: Rafle par un convexe variable II, Séminarie Analyse Convexe Montpellier (1972), Exposé 3

  43. Moreau, J.J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (eds.) New Variational Techniques in Mathematical Physics, pp. 173–322, C.I.M.E. II Ciclo 1973, Edizioni Cremonese, Roma (1974)

  44. Moreau, J.J.: Intersection of moving convex sets in a normed space. Math. Scand. 36, 159–173 (1975)

    MathSciNet  MATH  Google Scholar 

  45. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26, 347–374 (1977)

    MathSciNet  MATH  Google Scholar 

  46. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc, Publications Division, New York (1987)

    MATH  Google Scholar 

  47. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  48. Rockafellar, R.T.: Lipschitzian properties of multifunctions. Nonlinear Anal. TMA 9, 867–885 (1985)

    MathSciNet  MATH  Google Scholar 

  49. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    MATH  Google Scholar 

  50. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill Book Co., New York (1976)

    MATH  Google Scholar 

  51. Siddiqi, A.H., Manchanda, P.: Variants of Moreau’s sweeping process. Adv. Nonlinear Var. Inequal. 5, 1–16 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Tam, N.N., Yao, J.-C., Yen, N.D.: Solution methods for pseudomonotone variational inequalities. J. Optim. Theory Appl. 138, 253–273 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Thibault, L.: Sweeping process with regular and nonregular sets. J. Differ. Equ. 193, 1–26 (2003)

    MathSciNet  MATH  Google Scholar 

  54. Venel, J.: A numerical scheme for a class of sweeping processes. Numer. Math. 118, 367–400 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Vilches, E., Nguyen, B.T.: Evolution inclusions governed by time-dependent maximal monotone operators with a full domain. Set-Valued Var. Anal. 28, 569–581 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Yen, N.D.: Implicit function theorems for set-valued maps. Acta Math. Vietnam. 12(2), 17–28 (1987)

    MathSciNet  MATH  Google Scholar 

  57. Yen, N.D.: Hölder continuity of solutions to a parametric variational inequality. Appl. Math. Optim. 31, 245–255 (1995)

    MathSciNet  MATH  Google Scholar 

  58. Yen, N.D.: Stability of the solution set of perturbed nonsmooth inequality systems and application. J. Optim. Theory Appl. 93, 199–225 (1997)

    MathSciNet  MATH  Google Scholar 

  59. Yosida, K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Nguyen Khoa Son for several discussions on the subject and the two anonymous referees for very constructive comments. Nguyen Nang Thieu and Nguyen Dong Yen were supported by the project “Some qualitative properties of optimization problems and dynamical systems, and applications” (Code: ICRTM01\(\_\)2020.08) of the International Center for Research and Postgraduate Training in Mathematics (ICRTM) under the auspices of UNESCO of Institute of Mathematics, Vietnam Academy of Science and Technology.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Adly.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Equivalent Norms

Appendix: Equivalent Norms

Claim 1

In the space \(W^{1,\infty }((0,T),{\mathcal {H}})\) , the norm \(\Vert f\Vert _{W^{1,\infty }}=\Vert f\Vert _{L^\infty }+\Vert f'\Vert _{L^\infty }\) is equivalent to the following one: \(\Vert f \Vert =\Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\Vert {\dot{f}}(t)\Vert .\)

Proof

Noting that \(W^{1,\infty }((0,T),{\mathcal {H}})\subset W^{1,1}((0,T),{\mathcal {H}})\), one has f is an absolutely continuous function, which means

$$\begin{aligned} f(t)=f(0)+\int _0^t {\dot{f}}(s)ds,\quad \forall t\in [0,T]. \end{aligned}$$

From the proof of [16, Corollary 1.4.31] we can deduce that \({\dot{f}}(t)=f'(t)\) almost everywhere on (0, T). Then,

$$\begin{aligned} \Vert f\Vert _{W^{1,\infty }}=\Vert f\Vert _{L^\infty }+\Vert f'\Vert _{L^\infty }&= \Vert f\Vert _{L^\infty }+\Vert {\dot{f}}\Vert _{L^\infty } \\&= \mathop {\mathrm {ess\,sup }}\limits _{t\in (0,T)} \Vert f(t)\Vert + \Vert {\dot{f}}\Vert _{L^\infty }\\&= \sup _{t\in (0,T)} \Vert f(t)\Vert + \Vert {\dot{f}}\Vert _{L^\infty }\qquad (\Vert f(\cdot )\Vert \text { is continuous on} (0,T))\\&\ge \Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\Vert {\dot{f}}(t)\Vert . \end{aligned}$$
(A.1)

We also have

$$\begin{aligned} \Vert f\Vert _{W^{1,\infty }}=\Vert f\Vert _{L^\infty }+\Vert f'\Vert _{L^\infty }&= \Vert f\Vert _{L^\infty }+\Vert {\dot{f}}\Vert _{L^\infty } \\&= \mathop {\mathrm {ess\,sup }}\limits _{t\in (0,T)} \Vert f(0)+\int _{0}^{t} {\dot{f}}(s)ds\Vert + \Vert {\dot{f}}\Vert _{L^\infty }\\&\le \Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits _{t\in (0,T)} \Vert \int _{0}^{t} {\dot{f}}(s)ds\Vert + \Vert {\dot{f}}\Vert _{L^\infty }\\&\le \Vert f(0)\Vert + \int _{0}^{T} \Vert {\dot{f}}(s)\Vert ds\\&\quad + \Vert {\dot{f}}\Vert _{L^\infty } \qquad \text {(using Holder's inequality)}\\&\le \Vert f(0)\Vert +2\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\Vert {\dot{f}}(t)\Vert \\&\le 2(\Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\Vert {\dot{f}}(t)\Vert ). \end{aligned}$$
(A.2)

From (A.1) and (A.2), we obtain the desired result. \(\square \)

Claim 2

If M be a positive number, then the norm \(\Vert \cdot \Vert _{W^{1,\infty }}\) on the space \(W^{1,\infty }((0,T),{\mathcal {H}})\) is equivalent to the norm \(\Vert \cdot \Vert _M\) defined by

$$\begin{aligned} \Vert f \Vert _M=\Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\left( e^{-Mt}\Vert {\dot{f}}(t)\Vert \right) ,\quad \forall f\in W^{1,\infty }((0,T),{\mathcal {H}}). \end{aligned}$$

Proof

As we have mentioned in the previous proof, \({\dot{f}} = f'\) almost everywhere on (0, T). From (A.1) it follows that

$$\begin{aligned} \begin{aligned} \Vert f\Vert _{W^{1,\infty }}&\ge \Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\Vert {\dot{f}}(t)\Vert \\&\ge \Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;(e^{-Mt}\Vert {\dot{f}}(t)\Vert )\qquad \text {(since }e^{-Mt}\le e^0=1\text {, for all }t\in [0,T]\text {)}. \end{aligned} \end{aligned}$$
(A.3)

By (A.2), we get

$$\begin{aligned} \begin{aligned} \Vert f\Vert _{W^{1,\infty }}&\le 2(\Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\Vert {\dot{f}}(t)\Vert )\\&=2\left[ \Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\left( e^{Mt} e^{-Mt}\Vert {\dot{f}}(t)\Vert \right) \right] \\&\le 2\left[ \Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\left( e^{MT} e^{-Mt}\Vert {\dot{f}}(t)\Vert \right) \right] \\&=2\left[ \Vert f(0)\Vert +e^{MT}\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\left( e^{-Mt}\Vert {\dot{f}}(t)\Vert \right) \right] \\&\le 2e^{MT}\left[ \Vert f(0)\Vert +\mathop {\mathrm {ess\,sup }}\limits \limits _{t\in (0,T)}\;\left( e^{-Mt}\Vert {\dot{f}}(t)\Vert \right) \right] . \end{aligned} \end{aligned}$$
(A.4)

Combining (A.3) and (A.4) yields the equivalence of the two norms under consideration. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adly, S., Thieu, N.N. & Yen, N.D. Convex and Nonconvex Sweeping Processes with Velocity Constraints: Well-Posedness and Insights. Appl Math Optim 88, 45 (2023). https://doi.org/10.1007/s00245-023-09995-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09995-z

Keywords

Mathematics Subject Classification

Navigation