Skip to main content
Log in

Robustness of Attractors for Non-autonomous Kirchhoff Wave Models with Strong Nonlinear Damping

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The paper investigates the robustness of pullback attractors and pullback exponential attractors of the non-autonomous Kirchhoff wave models with strong nonlinear damping: \(u_{tt}- (1+\epsilon \Vert \nabla u\Vert ^2)\Delta u-\sigma (\Vert \nabla u\Vert ^2) \Delta u_t+f(u)=g(x,t)\), where \(\epsilon \in [0,1]\) is an extensibility parameter. It shows that when the growth exponent p of the nonlinearity f(u) is up to the supercritical range: \(1\le p<p^{**}\equiv \frac{N+4}{(N-4)^+}\), (i) the related process has a pullback attractor \({\mathscr {A}}_\epsilon \) in natural energy space \({\mathcal {H}}=(H^1_0\cap L^{p+1})\times L^2\) for each \(\epsilon \), and it is upper semicontinuous on the perturbation \(\epsilon \); (ii) the related process has a partially strong pullback exponential attractor \({\mathcal {M}}_\epsilon \) for each \(\epsilon \), and it is Hölder continuous on \(\epsilon \in [0,1]\). These results deepen and extend those in recent literatures (Chueshov in J Diff Equ 252:1229–1262, 2012; Ding et al. in Appl Math Lett 76:40–45, 2018; Wang and Zhong in Discrete Contin Dyn Syst 7:3189–3209, 2013). The main novelty of this paper is that it provides a new method to investigate the upper semicontinuity of pullback attractors and the stability of pullback exponential attractors in supercritical nonlinearity case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babin, A.V., Vishik, M.I.: Attractors of Evolutionary Equations. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  2. Bae, J.J., Nakao, M.: Existence problem of global solutions of the Kirchhoff type wave equations with a localized weakly nonlinear dissipation in exterior domains. Discret. Contin. Dyn. Syst. 11, 731–743 (2004)

    Article  Google Scholar 

  3. Ball, J.M.: Global attractors for damped semilinear wave equations. Discret. Contin. Dyn. Syst. 10, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  4. Caraballo, T., Kloeden, P.E., Real, J.: Pullback and forward attractors for a damped wave equation with delays. Stoch. Dyn. 4, 405–413 (2004)

    Article  MathSciNet  Google Scholar 

  5. Caraballo, T., Łukaszewicz, G., Reala, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. 64, 484–498 (2006)

    Article  MathSciNet  Google Scholar 

  6. Caraballo, T., Carvalho, A.N., Langa, J.A., Rivero, F.: Existence of pullback attractors for pullback asymptotically compact process. Nonlinear Anal. 72, 1967–1976 (2010)

    Article  MathSciNet  Google Scholar 

  7. Carvalho, A.N., Langa, J.A., Robinson, J.C., Surez, A.: Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system. J. Diff. Equ. 236, 570–603 (2007)

    Article  MathSciNet  Google Scholar 

  8. Carvalho, A.N., Langa, J.A., Robinson, J.C.: On the continuity of pullback attractors for evolution processes. Nonlinear Anal. 71, 1812–1824 (2009)

    Article  MathSciNet  Google Scholar 

  9. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-Dimensional Non-autonomous Dynamical System. Springer, New York (2013)

    Book  Google Scholar 

  10. Cavalcanti, M.M., Cavalcanti, V.N.D., Filho, J.S.P., Soriano, J.A.: Existence and exponential decay for a Kirchhoff–Carrier model with viscosity. J. Math. Anal. Appl. 226, 40–60 (1998)

    Article  MathSciNet  Google Scholar 

  11. Chueshov, I.: Long-time dynamics of Kirchhoff wave models with strong nonlinear damping. J. Diff. Equ. 252, 1229–1262 (2012)

    Article  MathSciNet  Google Scholar 

  12. D’Ancona, P., Spagnolo, S.: Nonlinear perturbations of the Kirchhoff equation. Commun. Pure Appl. Math. 47, 1005–1024 (1994)

    Article  MathSciNet  Google Scholar 

  13. Ding, P.Y., Yang, Z.J., Li, Y.N.: Global attractor of the Kirchhoff wave models with strong nonlinear damping. Appl. Math. Lett. 76, 40–45 (2018)

    Article  MathSciNet  Google Scholar 

  14. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  Google Scholar 

  15. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems. Proc. R. Soc. Edinb. 135A, 703–730 (2005)

    Article  Google Scholar 

  16. Freitas, M.M., Kalita, P., Langa, J.A.: Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations. J. Diff. Equ. 264, 1886–1945 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hale, J.K., Raugel, G.: Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation. J. Diff. Equ. 73, 197–214 (1998)

    Article  MathSciNet  Google Scholar 

  18. Hoang, L.T., Olson, E.J., Robinson, J.C.: Continuity of pullback and uniform attractors. J. Diff. Equ. 264, 4067–4093 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kalantarov, V., Zelik, S.: Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J. Diff. Equ. 247, 1120–1155 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kirchhoff, G.: Vorlesungen ber Mechanik. Teubner, Stuttgart (1883)

    Google Scholar 

  21. Kloeden, P.E.: Pullback attractors of non-autonomous semi-dynamical systems. Stoch. Dyn. 3, 101–112 (2003)

    Article  MathSciNet  Google Scholar 

  22. Ma, H.L., Zhong, C.K.: Attractors for the Kirchhoff equations with strong nonlinear damping. Appl. Math. Lett. 74, 127–133 (2017)

    Article  MathSciNet  Google Scholar 

  23. Nakao, M.: An attractor for a nonlinear dissipative wave equation of Kirchhoff type. J. Math. Anal. Appl. 353, 652–659 (2009)

    Article  MathSciNet  Google Scholar 

  24. Ono, K.: Global existence, decay, and blow up of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Diff. Equ. 137, 273–301 (1997)

    Article  Google Scholar 

  25. Ono, K.: On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation. Math. Methods Appl. Anal. Sci. 20, 151–177 (1997)

    Article  MathSciNet  Google Scholar 

  26. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    Article  Google Scholar 

  27. Sun, C.Y., Cao, D.M., Duan, J.Q.: Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity. Nonlinearity 19, 2645–2665 (2006)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y.H.: Pullback attractors for non-autonomous wave equations with critical exponent. Nonlinear Anal. 68, 365–376 (2008)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y.H., Zhong, C.K.: Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discret. Contin. Dyn. Syst. 7, 3189–3209 (2013)

    Article  MathSciNet  Google Scholar 

  30. Yang, Z.J., Li, Y.N.: Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models. Discret. Contin. Dyn. Syst. 38, 2629–2653 (2018)

    Article  MathSciNet  Google Scholar 

  31. Yang, Z.J., Wang, Y.Q.: Global attractor for the Kirchhoff type equation with a strong dissipation. J. Diff. Equ. 249, 3258–3278 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (No. 11671367).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, Z. Robustness of Attractors for Non-autonomous Kirchhoff Wave Models with Strong Nonlinear Damping. Appl Math Optim 84, 245–272 (2021). https://doi.org/10.1007/s00245-019-09644-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09644-4

Keywords

Mathematics Subject Classification

Navigation