Skip to main content
Log in

Some Geometric Inverse Problems for the Lamé System with Applications in Elastography

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we consider some geometric inverse problems for the Lamé system. A first motivation comes from from elastography, a technique that allows to identify the elastic properties of tissues and can serve, among other things, to detect a tumor from non-invasive (external) measurements. A second one is to identify a rigid structure in an elastic medium. We prove a uniqueness result, we introduce some iterative methods for the reconstruction problem and we present the results of several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alessandrini, G., Morassi, A., Rosset, E.: Detecting cavities by electrostatic boundary measurements. Inverse Probl. 18, 1333–1353 (2002). https://doi.org/10.1088/0266-5611/18/5/308

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J.H.: Identification of immersed obstacles via boundary measurements. Inverse Probl. 21, 1531–1552 (2005). https://doi.org/10.1088/0266-5611/21/5/003

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, C., Conca, C., Lecaros, R., Ortega, J.H.: On the identification of a rigid body immersed in a fluid: A numerical approach. Eng. Anal. Bound. Elem. 32, 919–925 (2008). Shape and Topological Sensitivity Analysis: Theory and Applications. http://www.sciencedirect.com/science/article/pii/S0955799708000398

  4. Andrieux, S., Ben Abda, A., Jaoua, M.: On the inverse emergent plane crack problem. Math. Methods Appl. Sci. 21, 895–906 (1998). https://doi.org/10.1002/(SICI)1099-1476(19980710)21:10%3c895::AID-MMA975%3e3.3.CO;2-T

    Article  MathSciNet  MATH  Google Scholar 

  5. Anagnostopoulos, K.A., Charalambopoulos, A.: The factorization method for the acoustic transmission problem. Inverse Probl. 29(2), 11–29 (2013). https://doi.org/10.1088/0266-5611/29/11/115015

    Article  MathSciNet  MATH  Google Scholar 

  6. Anagnostopoulos, K.A., Charalambopoulos, A.: The linear sampling method for the transmission problem in 2D anisotropic elasticity. Inverse Probl. 22(2), 553–577 (2006). https://doi.org/10.1088/0266-5611/22/2/011

    Article  MathSciNet  MATH  Google Scholar 

  7. Auliac, S.: These, Université Pierre et Marie Curie—Paris VI. http://tel.archives-ouvertes.fr/tel-01001631 (2014)

  8. Bellis, C., Bonnet, M.: Apposition of the topological sensitivity and linear sampling approaches to inverse scattering. Wave Motion 50(5), 891–908 (2013). https://doi.org/10.1016/j.wavemoti.2013.02.013

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben Abda, A., Hassine, M., Jaoua, M., Masmoudi, M.: Topological sensitivity analysis for the location of small cavities in Stokes flow. SIAM J. Control Optim. 48, 2871–2900 (2009/10) https://doi.org/10.1137/070704332

  10. Birgin, E.G., Martínez, J.M.: Improving ultimate convergence of an augmented Lagrangian method. Optim. Methods Softw. 23, 177–195 (2008). https://doi.org/10.1080/10556780701577730

    Article  MathSciNet  MATH  Google Scholar 

  11. Bociu, L., Castle, L., Martin, M., Toundykov, D.: Optimal control in a free boundary fluid-elasticity interaction. Discrete and Continuous Dynamical Systems. In: 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications. Suppl., pp. 122–131, (2015). https://doi.org/10.3934/proc.2015.0122

  12. Bondarenko, O., Kirsch, A.: The factorization method for inverse scattering by a penetrable anisotropic obstacle with conductive boundary condition. Inverse Probl. 32(10), 105011 (2016). https://doi.org/10.1088/0266-5611/32/10/105011

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonnet, M.: Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain. Comput. Methods Appl. Mech. Eng. 195(37–40), 5239–5254 (2006). https://doi.org/10.1016/j.cma.2005.10.026

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonnet, M., Constantinescu, A.: Inverse problems in elasticity. Inverse Probl. 21, R1–R50 (2005). https://doi.org/10.1088/0266-5611/21/2/R01

    Article  MathSciNet  MATH  Google Scholar 

  15. Cakoni, F., Colton, D.: TA Qualitative Approach to Inverse Scattering Theory. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-8827-9

    Book  MATH  Google Scholar 

  16. Canuto, B., Kavian, O.: Determining coefficients in a class of heat equations via boundary measurements. SIAM J. Math. Anal. 32(5), 963–986 (2001)

    Article  MathSciNet  Google Scholar 

  17. Charalambopoulos, A., Gintides, D., Kiriaki, K.: The linear sampling method for non-absorbing penetrable elastic bodies. Inverse Probl. 19(3), 549–561 (2003). https://doi.org/10.1088/0266-5611/19/3/305

    Article  MathSciNet  MATH  Google Scholar 

  18. Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Probl. 12, 383–393 (1996). https://doi.org/10.1088/0266-5611/12/4/003

    Article  MathSciNet  MATH  Google Scholar 

  19. Colton, D., Piana, M., Potthast, R.: A simple method using Morozov’s discrepancy principle for solving inverse scattering problems. Inverse Probl. 13, 1477–1493 (1997). https://doi.org/10.1088/0266-5611/13/6/005

    Article  MathSciNet  MATH  Google Scholar 

  20. Conca, C., Cumsille, P., Ortega, J.H., Rosier, L.: On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Probl. 24(045001), 18 (2008). https://doi.org/10.1088/0266-5611/24/4/045001

    Article  MathSciNet  MATH  Google Scholar 

  21. Conn, A.R., Gould, N.I.M., Toint, P.L.: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal. 28, 545–572 (1991). https://doi.org/10.1137/0728030

    Article  MathSciNet  MATH  Google Scholar 

  22. Delfour, M.C., Zolsio, J.-P.: Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization, Philadelphia, PA. https://doi.org/10.1137/1.9780898719826

  23. Doubova, A., Fernández-Cara, E., González-Burgos, M., Ortega, J.H.: A geometric inverse problem for the Boussinesq system. Discret. Contin. Dyn. Syst. Ser. B 6, 1213–1238 (2006). https://doi.org/10.3934/dcdsb.2006.6.1213

    Article  MathSciNet  MATH  Google Scholar 

  24. Doubova, A., Fernández-Cara, E., Ortega, J.H.: On the identification of a single body immersed in a Navier–Stokes fluid. Eur. J. Appl. Math. 18, 57–80 (2007). https://doi.org/10.1017/S0956792507006821

    Article  MathSciNet  MATH  Google Scholar 

  25. Doubova, A., Fernández-Cara, E.: Some geometric inverse problems for the linear wave equation. Inverse Probl. Imaging 9(2), 371–393 (2015). https://doi.org/10.3934/ipi.2015.9.371

    Article  MathSciNet  MATH  Google Scholar 

  26. Fernández-Cara, E., Maestre, F.: On some inverse problems arising in elastography. Inverse Probl. 28(085001), 15 (2012). https://doi.org/10.1088/0266-5611/28/8/085001

    Article  MathSciNet  MATH  Google Scholar 

  27. Finkel, D.E.: Direct optimization algorithm user guide. Center for Research in Scientific Computation, North Carolina State University, 2 (2012)

  28. Giusti, S.M., Ferrer, A., Oliver, J.: Topological sensitivity analysis in heterogeneous anisotropic elasticity problem. Theoretical and computational aspects. Comput. Methods Appl. Mech. Eng. 311, 134–150 (2016). https://doi.org/10.1016/j.cma.2016.08.004

    Article  MathSciNet  MATH  Google Scholar 

  29. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  30. Hörmander, L.: Linear Partial Differential Operators, 4th Printing. Springer, Berlin (1970)

    MATH  Google Scholar 

  31. Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  32. Ji, L., McLaughlin, R., Renzi, D., Yoon, J.-R.: Interior elastodynamics inverse problems: shear wave speed reconstruction in transient elastography. Inverse Probl. 19, S1–S29 (2003). https://doi.org/10.1088/0266-5611/19/6/051

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, S.G.: The NLopt nonlinear-optimization package (2011). http://ab-initio.mit.edu/nlopt

  34. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993). https://doi.org/10.1007/BF00941892

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaelo, P., Ali, M.M.: Some variants of the controlled random search algorithm for global optimization. J. Optim. Theory Appl. 130, 253–264 (2006). https://doi.org/10.1007/s10957-006-9101-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Kavian, O.: Lectures on Parameter Identification. IRMA Lectures in Mathematics and Theoretical Physics, vol. 4, pp. 125–162. de Gruyter, Berlin (2003)

  37. Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Probl. 14, 1489–1512 (1998). https://doi.org/10.1088/0266-5611/14/6/009

    Article  MathSciNet  MATH  Google Scholar 

  38. Kirsch, A.: Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Probl. 15, 413–429 (1999). https://doi.org/10.1088/0266-5611/15/2/005

    Article  MathSciNet  MATH  Google Scholar 

  39. Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1. Masson, Paris (1988)

    MATH  Google Scholar 

  40. Martínez-Castro, A.E., Faris, I.H., Gallego, R.: Identification of cavities in a three-dimensional layer by minimization of an optimal cost functional expansion, CMES Comput. Model. Eng. Sci. 87, 177–206 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Meftahi, H., Zolsio, J.-P.: Sensitivity analysis for some inverse problems in linear elasticity via minimax differentiability. Appl. Math. Model. 39(5–6), 1554–1576 (2015). https://doi.org/10.1016/j.apm.2014.09.026

    Article  MathSciNet  MATH  Google Scholar 

  42. Moubachir, M., Zolsio, J.-P.: Moving Shape Analysis and Control. Applications to Fluid Structure Interactions. Chapman & Hall/CRC, Boca Raton, FL (2006). https://doi.org/10.1201/9781420003246

  43. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999). https://doi.org/10.1007/b98874

  44. Ophir, J., Céspedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991). http://www.sciencedirect.com/science/article/pii/016173469190079W

  45. Petrov, A.Y., Chase, J.G., Sellier, M., Docherty, P.D.: Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography. Math. Biosci. 246, 191–201 (2013). https://doi.org/10.1016/j.mbs.2013.08.012

    Article  MathSciNet  MATH  Google Scholar 

  46. Potthast, R.: A survey on sampling and probe methods for inverse problems. Inverse Probl. 22(2), R1–R47 (2006). https://doi.org/10.1088/0266-5611/22/2/R01

    Article  MathSciNet  MATH  Google Scholar 

  47. Price, W.L.: A controlled random search procedure for global optimisation. Comput. J. 20, 367–370, (1977). http://comjnl.oxfordjournals.org/content/20/4/367.abstract

  48. Price, W.L.: Global optimization by controlled random search. J. Optim. Theory Appl. 40, 333–348 (1983). https://doi.org/10.1007/BF00933504

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Doubova.

Additional information

Partially supported by Grant MTM2016-76990-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doubova, A., Fernández-Cara, E. Some Geometric Inverse Problems for the Lamé System with Applications in Elastography. Appl Math Optim 82, 1–21 (2020). https://doi.org/10.1007/s00245-018-9487-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9487-8

Keywords

Mathematics Subject Classification

Navigation