Skip to main content
Log in

Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The problem of identifying the diffusion parameter appearing in a nonlocal steady diffusion equation is considered. The identification problem is formulated as an optimal control problem having a matching functional as the objective of the control and the parameter function as the control variable. The analysis makes use of a nonlocal vector calculus that allows one to define a variational formulation of the nonlocal problem. In a manner analogous to the local partial differential equations counterpart, we demonstrate, for certain kernel functions, the existence of at least one optimal solution in the space of admissible parameters. We introduce a Galerkin finite element discretization of the optimal control problem and derive a priori error estimates for the approximate state and control variables. Using one-dimensional numerical experiments, we illustrate the theoretical results and show that by using nonlocal models it is possible to estimate non-smooth and discontinuous diffusion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In [20] the diffusivity is defined as a second order symmetric positive definite tensor \({\varvec{\Theta }}\) and the kernel is defined as \(\gamma :={\varvec{\alpha }}\cdot \left( {\varvec{\Theta }}{\varvec{\alpha }}\right) \). Here for simplifying the analysis of the identification problem we consider a scalar diffusivity and we do not include it in the definition of the kernel.

  2. For \(s\in (0,1)\) and for a general domain \({\widetilde{\Omega }}\in \mathbb {R}^n\), let

    $$\begin{aligned} |v|_{H^s({\widetilde{\Omega }})}^2 := \int _{\widetilde{\Omega }}\int _{\widetilde{\Omega }}\frac{\big (v(\mathbf {y})-v(\mathbf {x})\big )^2}{|\mathbf {y}-\mathbf {x}|^{n+2s}}\,d\mathbf {y}d\mathbf {x}. \end{aligned}$$

    Then, the space \(H^s({\widetilde{\Omega }})\) is defined by [32] \( H^s({\widetilde{\Omega }}) := \left\{ v\in L^2({\widetilde{\Omega }}) : \Vert v\Vert _{L^2({\widetilde{\Omega }})} + |v|_{H^s({\widetilde{\Omega }})}<\infty \right\} . \)

  3. The reason of this choice will be made clear in the following section.

  4. The non-uniqueness of the solution is not due to the nonlocality, the same result holds for the corresponding local PDE control problem.

References

  1. Chen, X., Gunzburger, M.D.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200(9–12), 1237–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lovasz, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory Ser. B 96, 933–957 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barlow, M.T., Bass, R.F., Chen, Z., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bass, R.F., Kassmann, M., Kumagai, T.: Symmetric jump processes: localization, heat kernels and convergence. Annales de l’Institut Henri Poincaré—Probabilités et Statistiques 46, 59–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burch, N., Lehoucq, R.B.: Classical, nonlocal, and fractional diffusion equations on bounded domains. Int. J. Multiscale Comput. Eng. 9, 661–674 (2010)

    Article  Google Scholar 

  8. Buades, A., Coll, B., Morel, J.M.: Image denoising methods, a new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6(2), 595–630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42, 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosasco, L., Belkin, M., De Vito, E.: On learning with integral operators. J. Mach. Learn. Res. 11, 905–934 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Applebaum, D.: Lévy Processes and Stochastic Calculus, Volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge Press, Cambridge, MA (2004)

    Book  Google Scholar 

  14. Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284(2), 617–649 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, J., Mieussens, L.: Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit. SIAM J. Numer. Anal. 48(4), 1474–1491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bates, P.W., Chmaj, A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Stat. Phys. 95(5/6), 1119–1139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fife, P.: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

    Chapter  Google Scholar 

  18. Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 53(19–20), 4047–4059 (2010)

    Article  MATH  Google Scholar 

  19. Aksoylu, B., Mengesha, T.: Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31, 1301–1317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, Q., Gunzburger, M.D., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Q., Gunzburger, M.D., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Model. Meth. Appl. Sci 23, 493–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gunzburger, M.D., Lehoucq, R.B.: A nonlocal vector calculus with application to nonlocal boundary value problems. Multscale Model. Simul. 8, 1581–1620 (2010). doi:10.1137/090766607

    Article  MathSciNet  MATH  Google Scholar 

  23. Aksoylu, B., Parks, M.L.: Towards domain decomposition for nonlocal problems. Technical Report arXiv:0909.4504 (2009)

  24. Burch, N., Lehoucq, R.B.: Classical, nonlocal, and fractional diffusion equations on bounded domains. Int. J. Multiscale Comput. Eng. 9, 661–674 (2011)

    Article  Google Scholar 

  25. Burch, N., Lehoucq, R.B.: Computing the exit-time for a jump process. Technical report, Sandia National Labs (2012)

  26. Tian, L., Du, Q., Ju, L., and Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82(284), 1889–1922 (2013)

  27. Seleson, P., Parks, M.L., Gunzburger, M.D., Lehoucq, R.B.: Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. 8(1), 204–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010). doi:10.1137/090781267

    Article  MathSciNet  MATH  Google Scholar 

  29. D’Elia, M., Gunzburger, M.D.: Optimal distributed control of nonlocal steady diffusion problems. SIAM J. Control. Optim. 52(1), 243–273 (2014)

  30. Aksoylu, B., Parks, M.L.: Variational theory and domain decomposition for nonlocal problems. Appl. Math. Comput. 217(14), 6498–6515 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: Nonlocal Diffusion Problems, Volume 165 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010)

    Book  Google Scholar 

  32. Adams, R.A.: Sobolev Spaces. Academic Press, New York-London (1975)

    MATH  Google Scholar 

  33. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Systems and Control: Foundations and Applications. Birkhäuser (1989)

  34. Jin, B., Zou, J.: Numerical estimation of the robin coefficient in a stationary diffusion equation IMA J. Numer. Anal. 30(3), 677–701 (2010)

  35. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill Science/Engineering/Math, New York (1991)

    MATH  Google Scholar 

  36. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control. Society for Industrial and Applied Mathematics, Philadelphia, PA (2008)

    Book  MATH  Google Scholar 

  37. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  38. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems Volume 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  39. Graham, I.G., Hackbusch, W., Sauter, S.A.: Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal. 25(2), 379–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics. Walter de Gruyter, Berlin (2011)

  41. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2000)

    MATH  Google Scholar 

  42. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the US National Science Foundation Grant DMS-1315259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D’Elia.

Additional information

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Elia, M., Gunzburger, M. Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems. Appl Math Optim 73, 227–249 (2016). https://doi.org/10.1007/s00245-015-9300-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-015-9300-x

Keywords

Navigation