Skip to main content

Advertisement

Log in

Effects of Different Ammonia Levels on Tribenuron Methyl Toxicity in Daphnia magna

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The present study investigates the toxicity of the herbicide tribenuron methyl (TBM) as an anthropogenic agent and ammonia as an abiotic factor on Daphnia magna at environmentally relevant concentrations. These stressors may coexist in surface waters in agricultural regions. To achieve this objective, D. magna were exposed to TBM at a nominal concentration of 0.81 μg/L in association with a low ammonia (LA) concentration of 0.65 mg/L and a high ammonia (HA) concentration of 1.61 mg/L in acute toxicity tests of 96-h duration and chronic toxicity tests of 21-day duration. The D. magna also were exposed to TBM, HA, and LA singly. The D. magna were analysed for various biomarkers of sublethal toxicity. Glutathione peroxidase (GPx), glutathione S-transferase (GST), cholinesterase (ChE) enzyme activities, and levels of thiobarbituric acid reactive substances (TBARS) and total protein were determined spectrophotometrically. Mitochondrial membrane potential (MMP) was analysed by microscopy with fluorescence staining. Cytochrome c and 5′ AMP-activated protein kinase (AMPK) were analysed by Western blotting. Morphometric properties were examined microscopically. This is the first study in which AMPK, an indicator of intracellular energy, was measured in D. magna. GST and ChE enzyme activities and TBARS and total protein levels did not change during acute exposures (i.e., 96 h) in all treatments. GPx activity increased in D. magna from the HA + TBM treatment compared with single-exposure groups. The level of cytochrome c protein was elevated in D. magna from the LA and LA + TBM treatments. AMPK protein levels increased in all treatments with daphnids, except in the LA group. MMP was depolarised in D. magna from all treatments, whereas the most notable change was observed in HA + TBM mixture group in chronic exposures. The results show that GST and ChE may not be sensitive biomarkers for evaluating the sublethal toxic effects to D. magna exposed to environmentally relevant concentrations of ammonia and TBM. Acute and chronic exposure to ammonia and TBM probably caused an energetic crisis in D. magna. Therefore, AMPK and MMP are promising biomarkers for these toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

Adıyaman University Scientific Research Commission supported this project (FBEYL/2014-0003). The authors thank Dr. Serdar Sonmez for his precious help in microscopic analysis. They also thank Dr. Muhsin Aydın for editing the manuscript to read better.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Sevgiler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başalan Över, S., Guven, C., Taskin, E. et al. Effects of Different Ammonia Levels on Tribenuron Methyl Toxicity in Daphnia magna. Arch Environ Contam Toxicol 81, 46–57 (2021). https://doi.org/10.1007/s00244-021-00841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00841-3

Navigation