Skip to main content

Advertisement

Log in

Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats

  • Mini-Review
  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Metal oxide nanoparticles (MO-NPs) with multifunctional properties are used extensively in various industries and released into the environment as industrial effluents and waste nano-products. These non-degradable, toxic MO-NPs are accumulating in the environment, debilitating the ecosystem and their biological communities. In this review article, a real-time scenario of MO-NP toxicity towards the soil and aquatic ecosystem and their mode of toxicity have been addressed in detail. The up-to-date information presented here suggests serious consideration of the consequences before random utilization of MO-NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams LK, Lyon DY, McIntosh A, Alvarez PJJ (2006) Comparative eco-toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  • Arakha M, Saleem M, Mallick BC, Jha S (2015) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:9578–9588

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Tot Environ 409:1603–1608

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

    Article  CAS  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27:085103

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Canas JE, Qi B, Li S, Maul JD, Cox SB, Das S, Green MJ (2011) Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). J Environ Monit 13:3351–3357

    Article  CAS  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Lee SS (2016) Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol 14:65–78

    Article  CAS  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  Google Scholar 

  • Choi SJ, Kim RO, Yoon S, Kim WK (2016) Developmental toxicity of Zinc Oxide nanoparticles on Zebrafish (Danio rario): a transcriptomic analysis. PLoS ONE 11:e0160763

    Article  CAS  Google Scholar 

  • Ciacci C, Canonico B, Bilanicova D, Fabbri R, Cortese K, Gallo G, Marcomini A, Pojana G, Canesi L (2012) Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus Galloprovincialis. PLoS ONE 7:e36937

    Article  CAS  Google Scholar 

  • Coleman JG, Johnson DR, Stanley JK, Bednar AJ, Weiss JRCA, Boyd RE, Steevens JA (2010) Assessing the fate and effect of nano aluminium oxide in the terrestrial earthworm, Eisenia fetida. Environ Toxicol Chem 29:1575–1580

    Article  CAS  Google Scholar 

  • Collins D, Luxton T, Kumar N, Shah S, Walker VK (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE 7:e42663

    Article  CAS  Google Scholar 

  • Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479:171–185

    Article  CAS  Google Scholar 

  • Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D (2011) Solubility and batch retention of CeO2 nanoparticles in soils. Environ Sci Technol 45:2777–2782

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

    Article  CAS  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their application: a comprehensive overview. RSC Adv 5:105003–105037

    Article  CAS  Google Scholar 

  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756

    Article  CAS  Google Scholar 

  • Doyle JJ, Ward JE, Mason R (2016) Exposure of bivalve shellfish to titania nanoparticles under an environmental-spill scenario: encounter, ingestion and egestion. J Mar Biol Assoc UK 96:137–149

    Article  CAS  Google Scholar 

  • Drobne D, Jemec A, Pipan Tkalec Z (2009) In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut 157:1157–1164

    Article  CAS  Google Scholar 

  • Dunphy GKA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    Article  CAS  Google Scholar 

  • Exbrayat JM, Moudilou EN, Lapied E (2015) Harmful effects of nanoparticles on animals. Nanotechnology. https://doi.org/10.1155/2015/861092

    Article  Google Scholar 

  • Fairbairn EA, Keller AA, Madler L, Zhou D, Pokhrel S, Cherr GN (2011) Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. J Hazard Mater 192:1565–1571

    Article  CAS  Google Scholar 

  • Fang J, Shan XQ, Wen B, Lin JM, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 8:e84441

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Patricia A, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    Article  CAS  Google Scholar 

  • Ge Y, Priester JH, Werfhorst LCVD, Walker SL, Nisbet RM, An YJ, Schimel JP, Torresdey JLG, Holden PA (2014) Soybean plant modify metal oxide nanoparticle effects on soil bacterial community. Environ Sci Technol 48:13489–13496

    Article  CAS  Google Scholar 

  • Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behaviour of aluminium oxide nanoparticles as affected by pH and natural organic matter. Langmuir 24:12385–12391

    Article  CAS  Google Scholar 

  • Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultra-fine titanium dioxide particles in the absence of photo-activation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    Article  CAS  Google Scholar 

  • Hai-zhou Z, Guang-hua LU, Jun X, Shao-ge J (2012) Toxicity of nanoscale CuO and ZnO to Daphnia magna. Chem Res Chin Univ 28:209–213

    Google Scholar 

  • Hammond SA, Carew AC, Helbing CC (2013) Evaluation of the effects of titanium dioxide nanoparticles on cultured Rana catesbeiana tailfin tissue. Front Genet 4:1–7

    Article  CAS  Google Scholar 

  • Handy RD, Von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Hanna SK, Miller RJ, Lenihan HS (2013) Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS ONE 8:e61800

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Hooper HL, Jurkschat K, Morgan AJ, Bailey J, Lawlor AJ, Spurgeon DJ, Svendsen C (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37:1111–1117

    Article  CAS  Google Scholar 

  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591

    Article  CAS  Google Scholar 

  • Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, Dawson KA, Lynch I, Blasco J, Sheehan D (2014) Toxicity of copper oxide nanoparticles in the Blue Mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108:289–299

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2), on algae and daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • Jemec A, Drobne D, Remskar M, Sepcic K, Tisler T (2008) Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environ Toxicol Chem 27:1904–1914

    Article  CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano and micro-scaled oxide particles. Environl Pollut 157:1619–1625

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  Google Scholar 

  • Kim S, Sin H, Lee S, Lee I (2013) Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J Microbiol Biotechnol 23:1279–1286

    Article  CAS  Google Scholar 

  • Kool PL, Diez Ortiz M, Van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  Google Scholar 

  • Lapied E, Nahmani JY, Moudilou E, Chaurand P, Labille J, Rose J, Exbrayat JM, Oughton DH, Joner EJ (2011) Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water food and soil. Environ Int 37:1105–1110

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortility when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    Article  CAS  Google Scholar 

  • Lux Research (2008) Nanomaterials state of the market Q3 2008: stealth success, broad impact. Report. https://portal.luxresearchinc.com/research/document_excerpt/3735. Accessed 04 May 2017

  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324–1330

    Article  CAS  Google Scholar 

  • McShane H, Sarrazin M, Whalen JK, Hendershot WH, Sunahara GI (2012) Reproductive and behavioural responses of earthworms exposed to nano-sized titanium dioxide in soil. Environ Toxicol Chem 31:184–193

    Article  CAS  Google Scholar 

  • Morales-Diaz AB, Ortega-Ortiz H, Juarez-Maldonado A, Cadenas-Pliego G, Gonzalez-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystem. Adv Nat Sci Nanosci Nanotechnol 8:013001

    Article  CAS  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao AJ, Quigg A, Santschi P, Sigg L (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14:1109

    Article  Google Scholar 

  • Pipan-Tkalec Z, Drobne D, Jemec A, Romih T, Zidar P, Bele M (2010) Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology 269:198–203

    Article  CAS  Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cássio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams. Microb Ecol 62:58–68

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Mielkea RE, Horst AM, Moritz SC, Espinos K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS 109:14734–14735

    CAS  Google Scholar 

  • Roh JY, Park YK, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172

    Article  CAS  Google Scholar 

  • Sargent JF (2012) Nanotechnology: a policy primer. http://www.fas.org/sgp/crs/misc/RL34511.pdf. Accessed 04 May 2017

  • Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2005) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologie. http://europa.eu.int/comm/health/ph_risk/committees/04_scenihr/04_scenihr_en.htm. Accessed 04 May 2017

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92–110

    Article  CAS  Google Scholar 

  • Subhaskumar S, Selvanayagam M (2014) First report on: acute toxicity and gill histopathology of fresh water fish Cyprinus carpio exposed to zinc oxide (ZnO) nanoparticle. Int J Sci Res Publ 4:1–4

    Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  Google Scholar 

  • Thit A, Selck H, Bjerregaard HF (2013) Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death. Toxicol In Vitro 27:1596–1601

    Article  CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  Google Scholar 

  • Warheit D, Webb T, Sayes C, Colvin V, Reed K (2006) Pulmonery instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236

    Article  CAS  Google Scholar 

  • Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA, Tanguaya RL (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715

    Article  CAS  Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  Google Scholar 

  • Yamamoto A, Honma R, Sumita M, Hanawa T (2004) Cytotixicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res 68A:244–256

    Article  CAS  Google Scholar 

  • Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aqua Toxicol 136–137:49–59

    Article  CAS  Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Env Sci Health Part A 43:278–284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KM gratefully acknowledges the support from the UGC, India [Awardee No. F.15-1/2015-17/PDFWM-2015-17-WES-31430(SA-II)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Acharya.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Acharya, K. Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats. Arch Environ Contam Toxicol 75, 175–186 (2018). https://doi.org/10.1007/s00244-018-0519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-018-0519-9

Navigation