Skip to main content

Advertisement

Log in

Assessment of the Genotoxicity of Endosulfan in Earthworm and White Clover Plants Using the Comet Assay

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Endosulfan, as one of the most widely used organochlorine pesticides in the world, has increased the public concern about genotoxicity in soil ecosystems. The comet assay has been widely used in the fields of genetic toxicology and environmental biomonitoring. In the present study we conducted comet assay of endosulfan in earthworm (Eisenia foetida) and white clover (Trifolium repens L.), which are sensitive organisms suitable for acting as a bioindicator for agricultural ecosystems. Earthworms were exposed to endosulfan concentrations of 0.1, 1.0, and 10.0 mg/kg in the soil. White clover roots were immersed in hydroponic pots containing nutrient solutions of different endosulfan concentrations: 0.1, 1.0, and 10.0 mg/L. Tissues from each treatment were collected on the 7th, 14th, 21st, and 28th days of treatment process. Significant effects (p < 0.01) of both concentrations and times of exposure were observed. And endosulfan induced DNA damage in earthworm and white clover nuclei. The comet assay can be used as a reliable tool for early detection of endosulfan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310. doi:10.1016/j.ecoenv.2007.10.022

    Article  CAS  Google Scholar 

  • Aina R, Palin L, Citterio S (2006) Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65:666–673. doi:10.1016/j.chemosphere.2006.01.071

    Article  CAS  Google Scholar 

  • Anonymous (2001) Endosulfan fact sheet (ToxFAQs). Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Public Health, Atlanta, GA. Available at: http://www.atsdr.cdc.gov.toxfaq.html

  • Bajpayee M, Pandey AK, Zaidi S, Musarrat J, Parmar D, Mathur N, Seth PK, Dhawan A (2006) DNA damage and mutagenicity induced by endosulfan and its metabolites. Environ Mol Mutagen 47:682–692. doi:10.1002/em.20255

    Article  CAS  Google Scholar 

  • Booth LH, Hodge S, O’Halloran K (2001) Use of biomarkers in earthworms to detect use and abuse of field applications of a model organophosphate pesticide. Bull Environ Contam Toxicol 67:633–640. doi:10.1007/s001280171

    Article  CAS  Google Scholar 

  • Coleman DC, Ingham ER (1988) Carbon, nitrogen, phosphorus and sulfur cycling in terrestrial ecosystems. Biogeochemistry 5:3–6. doi:10.1007/BF02180315

    Article  Google Scholar 

  • De Smedt A, Ooms D, Van Den Heuvel R, Schoeters G (1998) Immunotoxicity of environmentals: an earthworm model for sublethal damage. Toxicol Lett 95:176. doi:10.1016/S0378-4274(98)80702-9

    Google Scholar 

  • Dueck TA, Van Dijk CJ, David F, Scholz N, Vanwalleghem F (2003) Chronic effects of vapour phase di-n-butyl phthalate (DBP) on six plant species. Chemosphere 53:911–920. doi:10.1016/S0045-6535(03)00580-0

    Article  CAS  Google Scholar 

  • Egaas E, Skaare JU, Goksøyr A, Svendsen NO, Kobro S (1992) Effects of the insecticide thiodan 35 (endosulfan) on xenobiotic metabolizing enzymes from midgut and gut-free tissues of some coleopteran larva. Comp Biochem Physiol C Comp Pharmacol 102:385–389. doi:10.1016/0742-8413(92)90130-Y

    Article  Google Scholar 

  • EJF (2002) End of the road for endosulfan: a call for action against a dangerous pesticide. Environmental Justice Foundation, London

    Google Scholar 

  • Eyambe GS, Goven AJ, Fitzpatrick LC, Venables BJ, Cooper EL (1991) A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Lab Anim 25:61–67. doi:10.1258/002367791780808095

    Google Scholar 

  • Gichner T, Lovecká P, Kochánková L, Macková M, Demnerová K (2007) Monitoring toxicity, DNA damage, and somatic mutations in tobacco plants growing in soil heavily polluted with polychlorinated biphenyls. Mutat Res 629:1–6

    CAS  Google Scholar 

  • Gichner T, Patková Z, Száková J, Žnidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62:113–119. doi:10.1016/j.envexpbot.2007.07.013

    Article  CAS  Google Scholar 

  • Grant WF (1994) The present status of higher plant bioassays for detection of environmental mutagens. Mutat Res 310:175–185. doi:10.1016/0027-5107(94)90112-0

    CAS  Google Scholar 

  • Green JC, Bartels CL, Warren-Hicks WJ, Parkhurst BR, Linder GL, Peterson SA, Miller WE (1988) Protocols for short termtoxicity screening of hazardous waste sites. U.S. EPA Report 600/3-88/029. U.S. Environmental Protection Agency, Washington, DC

  • Hodge HC, Sterner JH (1956) Combine and tabulation of toxicity classes. In: Spector WB (ed) Handbook of toxicology. W.B. Saunders Company, Philadelphia

  • Jovtchev G, Menke M, Schubert I (2001) The comet assay detects adaptation to MNU-induced DNA damage in barely. Mutat Res 493:95–100

    CAS  Google Scholar 

  • Kovalchuk O, Kovalchuk I, Arkhipov A, Telyuk P, Hohn B, Kovalchuk L (1998) The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident. Mutat Res 415:47–57

    CAS  Google Scholar 

  • Lin AJ, Zhang XH, Chen MM, Cao Q (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci 19:596–602. doi:10.1016/S1001-0742(07)60099-0

    Article  CAS  Google Scholar 

  • Liu W, Yang YS, Li P, Zhou Q, Sun T (2004) Root growth inhibition and induction of DNA damage in soybean (Glycine max) by chlorobenzenes in contaminated soil. Chemosphere 57:101–106. doi:10.1016/j.chemosphere.2004.04.045

    Article  CAS  Google Scholar 

  • Neuparth T, Bickham JW, Theodorakis CW, Costa FO, Costa MH (2006) Endosulfan-induced genotoxicity detected in the gilthead seabream, Sparus aurata L., by means of flow cytometry and micronuclei assays. Bull Environ Contam Toxicol 76:242–248. doi:10.1007/s00128-006-0913-2

    Article  CAS  Google Scholar 

  • OECD (2004) Guidelines for testing of chemicals No. 222: earthworm reproduction tests (Eisenia foetida/Eisenia andrei). Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Reddy MV, Reddy VR (1992) Effects of organochlorine, organophosphorus and carbamate insecticides on the population structure and biomass of earthworms in a semi-arid tropical grassland. Soil Biol Biochem 24:1733–1738. doi:10.1016/0038-0717(92)90179-2

    Article  CAS  Google Scholar 

  • Reuber MD (1981) The role of toxicity in the carcinogenicity of endosulfan. Sci Total Environ 20:23–47. doi:10.1016/0048-9697(81)90034-6

    Article  CAS  Google Scholar 

  • Sethunathan N, Megharaj M, Chen Z, Singh N, Kookana RS, Naidu R (2002) Persistence of endosulfan and endosulfan sulfate in soil as affected by moisture regime and organic matter addition. Bull Environ Contam Toxicol 68:725–731. doi:10.1007/s001280314

    Article  CAS  Google Scholar 

  • Sharma S, Nagpure NS, Kumar R, Pandey S, Srivastava SK, Singh PJ, Mathur PK (2007) Studies on the genotoxicity of endosulfan in different tissues of fresh water fish Mystus vittatus using the comet assay. Arch Environ Contam Toxicol 53:617–623. doi:10.1007/s00244-006-0228-7

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Scheneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. doi:10.1016/0014-4827(88)90265-0

    Article  CAS  Google Scholar 

  • Tomlin C (1995) Endosulfan insecticide acaricide, the pesticide manual, vol 262. Crop Protection Publications, Richmond, UK, pp 388–390

    Google Scholar 

  • Turner KO, Syvanen M, Meizel S (1997) The human acrosome reaction is highly sensitive to inhibition by cyclodiene insecticides. J Androl 18:571–575

    CAS  Google Scholar 

  • UNEP (2002) Regional based assessment of persistent toxic substances. Indian Ocean Regional Report. Chemicals, United Nations Environmental Programme, Global Environment Facility

  • Vasseur L, Fortin MJ, Cyr J (1998) Clover and cress as indicator species of impacts from limed sewage sludge and landfill wastewater land application. Sci Total Environ 217:231–239. doi:10.1016/S0048-9697(98)00178-8

    Article  CAS  Google Scholar 

  • Vig K, Singh DK, Agarwal HC, Dhawan AK, Dureja P (2008) Soil microorganisms in cotton fields sequentially treated with insecticides. Ecotoxicol Environ Saf 69:263–276. doi:10.1016/j.ecoenv.2006.12.008

    Article  CAS  Google Scholar 

  • Wang F, Jiang X, Bian YR, Yao FX, Gao HJ, Yu GF, Munch JC, Schroll R (2007) Organochlorine pesticides in soils under different land usage in the Taihu Lake region, China. J Environ Sci 19:584–590. doi:10.1016/S1001-0742(07)60097-7

    Article  CAS  Google Scholar 

  • WHO (2002) The WHO recommended classification of pesticides by hazard and guidelines to classification 2000–2002. International Programme on Chemical Safety/Inter-Organization Programme for Sound Management of Chemicals, World Health Organization, Geneva

    Google Scholar 

  • Yuquan L, Morimoto K, Takeshita T, Takeuchi T, Saito T (2000) Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells. Environ Health Perspect 108:559–561. doi:10.2307/3454619

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Ai-jun Lin for his assistance in performing the experiments. This work was supported by grants from the National Natural Science Foundation of China (20477022 and 40801203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Sheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Zhu, LS., Wang, J. et al. Assessment of the Genotoxicity of Endosulfan in Earthworm and White Clover Plants Using the Comet Assay. Arch Environ Contam Toxicol 56, 742–746 (2009). https://doi.org/10.1007/s00244-009-9309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9309-8

Keywords

Navigation