Skip to main content

Advertisement

Log in

Hyperoxaluria-induced oxidative stress and antioxidants for renal protection

  • Invited Review
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Renal cellular exposure to oxalate (Ox) and/or CaOx crystals leads to the production of reactive oxygen species (ROS), development of oxidative stress followed by injury and inflammation. Renal injury and inflammation appear to play a significant role in stone formation. ROS are produced from many sources and involve a variety of signaling pathways. Tissue culture and animal model studies show that treatments with anti-oxidants and free radical scavengers reduce Ox/CaOx crystal induced injuries. In addition, CaOx crystal deposition in kidneys is significantly reduced by treatments with antioxidants and free radical scavengers, indicating their efficacy. These results point towards a great potential for the therapeutic application of antioxidants and free radical scavengers to reduce stone recurrence particularly after shock wave lithotripsy, which is itself known to generate ROS and cause renal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Danpure CJ, Purdue PE (1995) Primary hyperoxaluria. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York, p 2385

  2. Hatch M, Freel RW, Vaziri ND (1999) Regulatory aspects of oxalate excretion in enteric oxalate elimination. J Am Soc Nephrol 10: S324

    PubMed  Google Scholar 

  3. Hackett RL, Shevock PN, Khan SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22: 197

    Article  PubMed  Google Scholar 

  4. Koul H, Kenington L, Nair G, Honeyman T, Menon M, Scheid CR (1994) Ox-induced initiation of DNA synthesis in LLC-PK1 cells, a line of renal epithelial cells. Biochem Biophys Res Commun 205: 1632

    Article  PubMed  Google Scholar 

  5. Koul H, Kenington L, Honeyman T, Jonassen J, Menon M, Scheid CR (1996) Activation of the c-myc gene mediates the mitogenic effects of Ox in LLC-PK1 cells, a line of renal epithelial cells. Kidney Int 50: 1525

    PubMed  Google Scholar 

  6. Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23: 71

    Article  PubMed  Google Scholar 

  7. Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue culture studies. Clin Exp Nephrol 8: 75

    Article  PubMed  Google Scholar 

  8. Khan SR (2004) Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol 98: 55

    Article  Google Scholar 

  9. Scheid CR, Koul H, Hill WA, Luber-Narod J, Kennington L, Honeyman T, Jonassen J, Menon M (1996) Ox toxicity in LLC-PK1 cells: role of free radicals. Kidney Int 49: 413

    PubMed  Google Scholar 

  10. Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and CaOx nephrolithiasis. J Urol 157: 1059

    Article  PubMed  Google Scholar 

  11. Thamilselvan S, Hackett RL, Khan SR (2000) Free radical scavengers catalase and superoxide dismutase provide protection from oxalate associated injury to LLC-PK1 and MDCK cells. J Urol 164: 224

    Article  PubMed  Google Scholar 

  12. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31: 3

    PubMed  Google Scholar 

  13. Drodge W (2001) Free radicals in the physiological control of cell function. Physiol Rev 82: 47

    Google Scholar 

  14. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11: 1

    Article  PubMed  Google Scholar 

  15. Huang H-S, Ma M-C, Chen C-F, Chen J (2003) Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 61: 1123

    Article  PubMed  Google Scholar 

  16. Tungsanga K,Sriboonlue P, Futrakul P, Yachantha C, Tosukhowong P (2005) Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res (in press)

  17. Khand FD, Gordge MP, Robertson WG, Noronha-Dutra AA, Hothersall JS (2002) Mitochondrial superoxide production during oxalate mediated oxidative stress in renal epithelial cells. Free Radic Biol Med 32: 1339

    Article  PubMed  Google Scholar 

  18. Cao L-C, Honeyman T, Jonassen J, Scheid C (2000) Oxalate-induced ceramide accumulation in Madin-Darby canine kidney and LLC-PK1 cells. Kidney Int 57: 2403

    Article  PubMed  Google Scholar 

  19. Byer K, Khan SR (2005) Citrate provides protection against oxalate and calcium oxalate crystal induced oxidative damage to renal epithelium. J Urol 173: 640

    Article  PubMed  Google Scholar 

  20. Toblli JE, Ferder L, Stella I, De Cavanagh MVE, Angerosa M, Inserra F (2002) Effects of angiotensin II subtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by hyperoxaluria. J Urol 168: 1550

    Article  PubMed  Google Scholar 

  21. Huang H-S, Ma M-C, Chen J, Chen C-F (2002) Changes in the oxidant-antioxidant balance in the kidneys of rats with nephrolithiasis induced by ethylene glycol. J Urol 167: 2584

    Article  PubMed  Google Scholar 

  22. Chen D H-C, Kaung H-LC, Miller CM, Resnick MI, Marengo SR (2004) Microarray analysis of changes in renal phenotype in the ethylene glycol rat model of urolithiasis: potential and pitfalls. BJU Int 94: 637

    Article  PubMed  Google Scholar 

  23. Cao L-C, Honeyman T, Cooney R, Kennington L, Scheid C R, Jonassen J A, (2004) Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 66: 1890

    Article  PubMed  Google Scholar 

  24. Li N, Yi FX, Spurrier JL, Bobrowitz CA, Zou AP (2002) Production of superoxide through NADH oxidase in thick ascending limb of the loop in rat kidney, Am J Physiol 282: F1111

  25. Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97: 8010

    Article  PubMed  Google Scholar 

  26. Hanna IR, Taniyama Y, Szocs K, Rocic P, Griendling KK (2002) NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal 4: 899

    Article  PubMed  Google Scholar 

  27. Griendling KK, Minieri CA, Ollenrenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74: 1141

    PubMed  Google Scholar 

  28. James EA, Galceran JM, Raij L (1998) Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int 54: 775

    Article  PubMed  Google Scholar 

  29. Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in the rat kidneys. J Am Soc Nephrol 15: 635

    Article  PubMed  Google Scholar 

  30. Toblli JE, Ferder L, Stella I, Angerosa M, Inserra F (2001) Protective role of enalapril for chronic tubulointerstitial lesions of hyperoxaluria. J Urol 166: 275

    Article  PubMed  Google Scholar 

  31. Umekawa T, Byer KJ, Khan SR (2004) NADPH oxidase as a source of reactive oxygen species in oxalate and calcium oxalate crystal induced injury of renal epithelial cells. In: Kidney stones: inside and out, Proceedings of the 10th International Symposium on Urolithiasis, Hong Kong, 2004, The reprographic unit, Hong Kong Polytechnic University, Hong Kong, p 118

  32. Umekawa T, Byer K, Uemura H, Khan SR (2005) Diphenyleneiodium (DPI) reduces oxalate ions and calcium oxalate monohydrate and brushite crystal-induced up-regulation of MCP-1 in nrk 52e cells. Nephrol Dial Transplant (in press)

  33. Rashid T, Menon M, Thamilselvan S (2004) Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol 24: 557

    Article  PubMed  Google Scholar 

  34. Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Menon M, Koul HK (2002) Oxalate selectively activates the p38 mitoge-activated protein kinase and c-Jun N-terminal kinase signal transduction pathway in renal epithelial cells. J Biol Chem 277: 13321

    Article  PubMed  Google Scholar 

  35. Koul HK, Menon M, Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Huang M (2002) COM crystals activate the p38 mitoge-activated protein kinase (MAPK) signal transduction pathway in renal epithelial cells. J Biol Chem 277: 36845

    Article  PubMed  Google Scholar 

  36. Han HJ, Lim MJ, Lee YJ (2004) Oxalate inhibits renal proximal tubule cell proliferation via oxidative stress, p38 MAPK/JNK, and cPLA2 signaling pathways. Am J Physiol Cell Physiol 287: C1058

    Article  PubMed  Google Scholar 

  37. Jonassen JA, Cao LC, Honeyman T, Scheid CR(2003) Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit Rev Eukaryot Gene Expr 13: 55

    Article  PubMed  Google Scholar 

  38. Antus B, Exton MS, Rosivall L (2001) Angiotensin II: a regulator of inflammation during renal disease? Int J Immunopathol Pharmacol 14: 25

    PubMed  Google Scholar 

  39. Toblli JE, Ferder L, Angerosa M, Inserra F (1999) Effects of amlodipine on tubulointerstitial lesions in normotensive hyperoxaluric rats. Hypertension 34: 854

    PubMed  Google Scholar 

  40. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9: 1450

    PubMed  Google Scholar 

  41. Khan SR, Byer KJ, Thamilselvan S, Hackett RL, McCormack WT, Benson NA, Vaughn KL, Erdos GW (1999) Crystal-cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J Am Soc Nephrol 10: S457

    PubMed  Google Scholar 

  42. Miller C, Kennington L, Cooney R, Kohjimoto Y, Cao LC, Honeyman T, Pullman J, Jonassen J, Scheid C (2000) Oxalate toxicity in renal epithelial cells: characteristics of apoptosis and necrosis. Toxicol Pharmacol 162: 132

    Article  Google Scholar 

  43. Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat, role of renal papilla. Am J Pathol 107: 59

    PubMed  Google Scholar 

  44. Khan SR (1995) Experimental CaOx nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9: 89

    PubMed  Google Scholar 

  45. Fasano JM, Khan SR (2001) Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: an in vitro study. Kidney Int 59: 169

    Article  PubMed  Google Scholar 

  46. Riese RJ, Mandel NS, Wiessner JH, Mandel GS, Becker CJ, Kleinman JC (1992) Cell polarity and CaOx crystal adherence to cultured collecting duct cells. Am J Physiol 262: F177

    PubMed  Google Scholar 

  47. Verkoelen CF, Van der Broom BG, Houtsmuller AB, Schroeder FH, Romijn JC (1998) Increased CaOx monohydrate crystal binding to injured renal epithelial cells in culture. Am J Physiol 274: F958

    PubMed  Google Scholar 

  48. Bigelow MW, Wienner JH, Kleinman JC, Mandel NS (1999) Surface exposure of PS increases CaOx crystal attachment to IMCD cells. Am J Physiol 272: F55

    Google Scholar 

  49. Wiessner JH, Hasegawa AT, Hung LY, Mandel NS (1999) Oxalate-induced exposure of PS on surface of renal epithelial cells in culture. J Am Soc Nephrol 10: S441

    PubMed  Google Scholar 

  50. Thamilselvan S, Selvam R (1997) Effect of vitamin E and mannitol on renal calcium oxalate retention in experimental nephrolithiasis. Indian J Biochem Biophys 34: 319

    PubMed  Google Scholar 

  51. Kumar S, Selvam R (2003) Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J Nutr Biochem 14: 306

    Article  PubMed  Google Scholar 

  52. Selvam R, Ravichandran V (1993) Restoration of tissue antioxidants and prevention of renal stone deposition in vitamin B6 deficient rats fed with vitamin E or methionine. Indian J Exp Biol 31: 882

    PubMed  Google Scholar 

  53. Muthukumar A, Selvam R (1998) Role of glutathione on renal mitochondrial status in hyperoxaluria. Mol Cell Biochem 185: 77

    Article  PubMed  Google Scholar 

  54. Ito Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K (2005) Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol 173: 271

    PubMed  Google Scholar 

  55. Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by rnal epithelial cells. Kidney Int 61: 105

    Article  PubMed  Google Scholar 

  56. Pearle MS (2001) Prevention of nephrolithiasis. Curr Opin Nephrol Hypertens 10: 203

    PubMed  Google Scholar 

  57. Vaziri ND (2004) Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens 13: 93

    PubMed  Google Scholar 

  58. Griendling KK, Fitzgerald GA (2004) Oxidative stress and cardiovascular injury. Part II: animal and human studies. Circulation 108: 2034

    Article  Google Scholar 

  59. Meagher EA (2003) Treatment of atherosclerosis in the new millennium: is there a role for vitamin E? Prev Cardiol Spring 6(2): 85

    Google Scholar 

  60. Hasnain BI, Mooradian AD (2004) Recent trials of antioxidant therapy: what should we be telling our patients? Cleve Clin J Med 71: 327

    PubMed  Google Scholar 

  61. Baxmann AC, Mendonca COG, Heilberg IP (2003) Effect of vitamin C supplements on urinary oxalate and pH in calcium oxalate stone forming patients. Kidney Int 63: 1066

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed R. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.R. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 33, 349–357 (2005). https://doi.org/10.1007/s00240-005-0492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-005-0492-4

Keywords

Navigation