Skip to main content
Log in

Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abaffy T, Malhotra A, Luetje CW (2007) The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J Biol Chem 282(2):1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Almeida-Silva F, Zhao T, Ullrich KK, Schranz ME, Peer YV (2023) syntenet: an R/Bioconductor package for the inference and analysis of synteny networks. Bioinformatics 39(1):btac806

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Anand L, Lopez CMR (2022) ChromoMap: R pacakge for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinform 23(33):1–9

    Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acid Res 43(W1):W39–W49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrasso DA, Cajade R, Nenda SJ, Baloriani G, Herrera R (2009) Introduction of the American bullfrog Lithobates catesbeianus (Anura: Ranidae) in natural and modified environments: an increasing conservation problem in Argentina. S Am J Herpetol 4:69–75

    Article  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Article  CAS  PubMed  Google Scholar 

  • Conceição IC, Aguadé M (2008) High incidence of interchromosomal transpositions in the evolutionary history of a subset of OR genes in Drosophila. J Mol Evol 66:325–332

    Article  PubMed  Google Scholar 

  • Degl’Innocenti A, D’Errico A (2017) Regulatory features for odorant receptor genes in the mouse genome. Front Genet 8(9):1–8

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of Amphibians. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Eirín-López JM, Rebordinos L, Rooney AP, Rozas J (2012) The birth-and-death evolution of multigene families revisited. Genome Dyn 7:170–196

    Article  PubMed  Google Scholar 

  • Emms D, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):1–14. https://doi.org/10.1186/s13059-019-1832-y

    Article  Google Scholar 

  • Escoriza D, Hassine J (2019) North-western Africa amphibians. In: Escoriza D, Hassine J (eds) Amphibians of North Africa. Academic Press, pp 75–229

    Chapter  Google Scholar 

  • Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Ward W (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Mus Nat 294:1–240

    Article  Google Scholar 

  • Fei L, Ye C-Y, Huang Y-A, Liu M-Y (1999) Atlas of amphibians of China. Henan Science and Technical Press, Zhengzhou

    Google Scholar 

  • Ficetola GF, Coïc C, Detaint M, Berroneau M, Lorvelec O, Miaud C (2006) Pattern of distribution of the American bullfrog Rana catesbeiana in Europe. Biol Invas 9:767–772

    Article  Google Scholar 

  • Fleischer J, Breer H, Strotmann J (2009) Mammalian olfactory receptors. Front Cell Neurosci 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming RI, Mackenzie CD, Cooper A, Kennedy MW (2009) Foam nest components of the túngara frog: a cocktail of proteins conferring physical and biological resilience. Proc R Soc 276(1663):1787–1795

    CAS  Google Scholar 

  • Freeman AR, Ophir AG, Sheeran MJ (2020) The giant pouched rat (Cricetomys ansorgei) olfactory receptor repertoire. PLoS ONE 15(4):e0221981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sá RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. AMNH 2006(297):1–300

    Google Scholar 

  • Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11(5):685–702

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Kim J (2007) Molecular evolution of Drosophila odorant receptor genes. Mol Biol Evol 24:1198–1207

    Article  CAS  PubMed  Google Scholar 

  • Han W, Wu Y, Zeng L, Zhao S (2022) Building the Chordata Olfactory Receptor Database using more than 400,000 receptors annotated by Genome2OR. Sci China Life Sci 65:2539–2551

    Article  CAS  PubMed  Google Scholar 

  • Hayden S, Teeling E (2014) The molecular biology of vertebrate olfaction. Anat Rec 297:2216–2226

    Article  Google Scholar 

  • Heyer WR, Rand AS (1977) Foam Nest Construction in the Leptodactylid Frogs Leptodactylus pentadactylus and Physalaemus pustulosus (Amphibia, Anura, Leptodactylidae). J Herpetol 11:225–228

    Article  Google Scholar 

  • Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes GM, Boston ESM, Finarelli JA, Murphy WJ, Higgins DG, Teeling EC (2018) The Birth and Death of olfactory receptors gene families in mammalian niche adaptation. Mol Biol Evol 35(6):1390–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jane T (2019) Development of central respiratory control in anurans: the role of neurochemicals in the emergence of air-breathing and the hypoxic response. RSPNB 270:103266. https://doi.org/10.1016/j.resp.2019.103266

    Article  Google Scholar 

  • Joger U (1982) Zur herpetofaunistik kameruns (II) [On the herpetofaunistics of Camaroon (II)]. Bonner Zoologische Beltrage 33:313–342

    Google Scholar 

  • Jorgensen CB (1994) Water economy in a terrestrial toad (Bufo bufo), with special reference to cutaneous drinking and urinary bladder function. Comp Biochem Physiol 109A(2):311–324

    Article  Google Scholar 

  • Jungblut LD, Reiss JO, Pozzi AG (2021) Olfactory subsystems in the peripheral olfactory organ of anuran amphibians. Cell Tissue Res 383(1):289–299

    Article  CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2019) Brief Bioinformatics 20(4):1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Yang Z, Maldonado E, Li C, Zhang G, Gilbert MTP, Jarvis ED, O’Brien SJ, Johnson WE, Antunes A (2015) Olfactory receptor subgenomes linked with broad ecological adaptation in Sauropsida. Mol Biol Evol 32:2832–2843

    Article  CAS  PubMed  Google Scholar 

  • Kosmala GK, Brown GP, Shine R, Christina K (2020) Skin resistance to water gain and loss has changed in cane toads (Rhinella marina) during their Australian invasion. Ecol Evol 00:1–9

    Google Scholar 

  • Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos; an information asthetic for comparative genomics. Genome Res 19(9):1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurak S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-deman exploration of metazoan gene family trees on MAFFT sequence alighment server with enhanced interactivity. Nucleic Acids Res 41(W1):W22–W28

    Article  Google Scholar 

  • Kurian SM, Naressi RG, Manoel D, Barwich A, Malnic B, Saraiva, LR (2021) Odor coding in the mammalian olfactory epithelium. Cell Tissue Res 383(1):445-456

  • Leivas PT, Moura MO, Fávaro LF (2012) The reproductive biology of the invasive Lithobates catesbeianus (Amphibia: Anura). J Herpeto 46(2):153–161

    Article  Google Scholar 

  • Li J, Yu H, Wang W, Fu C, Zhang W, Han F, Wu H (2019) Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense. Nat Commun 10:5551. https://doi.org/10.1038/s41467-019-13531-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1589

    Article  CAS  PubMed  Google Scholar 

  • Liedtke HC, Gower DJ, Wilkinson M, Gomez-Mestre I (2018) Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat Ecol Evol 2:1792–1799

    Article  PubMed  Google Scholar 

  • Liu H, Chen C, Lv M, Liu N, Hu Y, Zhang H, Enbody ED, Gao Z, Andersson L, Wang W (2021) A chromosome-level assembly of blunt snout bream (Megalobrama amblycephala) genome reveals an expansion of olfactory receptor genes in freshwater fish. Mol Biol Evol 38(10):4238–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Jiang J, Wu H, Chen X, Song X, Liao W, Fu J (2021) A large genome with chromosome-scale assembly sheds light on the evolutionary success of a true toad (Bufo gargarizans). Mol Ecol 21:1256–1273

    Article  CAS  Google Scholar 

  • Lu S-Q, Yang D-T (1995) A study of relationships among ranid frogs of the genera Nanorana and Altirana in the Transhimalaya Mountains of China. Asiat Herpetol Res 6:73–77

    Article  Google Scholar 

  • Lv L, Liang X, He S (2019) Genome-wide identification and characterization of olfactory receptor genes in Chinese Perch. Siniperca Chuatsi Genes 10(2):178

    CAS  PubMed  Google Scholar 

  • Lynch JD (2006) The tadpoles of frogs and toads found in the lowlands of northern Colombia. Rev Acad Colomb Cienc 30(116):443–457

    Google Scholar 

  • Man R, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:240–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marenco L, Wang R, McDougal R, Olender T, Twik M, Bruford E, Liu X, Zhang J, Lancet D, Shepherd G, Crasto C (2016) ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions. Database 2016:1–10

    Article  Google Scholar 

  • McKenzie SK, Kronauer DJC (2018) The genomic aechiteture and molecular evolution of odorant receptors. Genome Res 28:1757–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros CI, Both C, Kaefer IL, Cechin SZ (2016) Reproductive phenology of the American Bullfrog in subtropical Brazil: photoperiod as a main determinant of seasonal activity. An Acad Bras Cienc 88(3):1909–1921

    Article  PubMed  Google Scholar 

  • Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  CAS  PubMed  Google Scholar 

  • Mudd AB (2019) Comparative genomics and chromosome evolution. Dissertation, University of California, Berkeley

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8(7):1–10

    Article  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin): a systematical & chronological survey of the development from the fertilized egg til the end of metamorphosis. Garland Science, New York

    Google Scholar 

  • Niimura Y (2009a) On the origin of evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Niimura Y (2009b) Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environment and genomic contents. Hum Genomics 4(2):107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura Y (2012) Olfactory receptor multigene Family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics 13:103–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura Y (2013a) Identification of chemosensory receptor genes from vertebrate genomes. Methods Mol Biol 1068:95–105

    Article  CAS  PubMed  Google Scholar 

  • Niimura Y (2013b) Identification of olfactory receptor genes from mammalian genome sequences. Methods Mol Biol 1003:39–49

    Article  CAS  PubMed  Google Scholar 

  • Niimura Y, Matsui A, Touhara K (2014) Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res 24(9):1485–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura Y, Matsui A, Touhara K (2018) Acceleration of Olfactory Receptor Gene Loss in Primate Evolution: Possible Link to Anatomical Change in Sensory Systems and Dietary Transition. Mol Biol Evol 35(6): 1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human genome. PNAS 100(21):12235–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura Y, Nei M (2005a) Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages. Gene 346:23–28

    Article  CAS  PubMed  Google Scholar 

  • Niimura Y, Nei M (2005b) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. PNAS 102(17):6039–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS ONE 2:e708

    Article  PubMed  PubMed Central  Google Scholar 

  • Niimura Y, Nei M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963

    Article  PubMed  Google Scholar 

  • Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 51:505–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa M, Nei M (2007) Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci USA 104:7122–7127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y (1927) Frogs in Japan. Copeia 158:161–166

    Article  Google Scholar 

  • Olender T, Nativ N, Lancet D (2013) HORDE: comprehensive resource for olfactory receptor genomics. Methods Mol Biol 1003:23–38

    Article  CAS  PubMed  Google Scholar 

  • Phillippy AM (2017) New advances in sequence assembly. Genome Res 27:11–13

    Article  Google Scholar 

  • Pond SLK, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22(5):1208–1222

    Article  CAS  Google Scholar 

  • Ren X, Chang S, Laframboise A, Green W, Dubuc R, Zielinski B (2009) Projections from the accessory olfactory organ into the medial region of the olfactory bulb in the sea lamprey (Petromyzon marinus): a novel vertebrate sensory structure? J Comput Neurol 516:105–116

    Article  Google Scholar 

  • Rodel MO (2000) Herpetofauna of West Africa: amphibians of the western savannah. Frankfurt am Main, Germany

  • Ron S, Narváez A, Romero G (2014) Reproduction and spawning behavior in the frog, Engystomops pustulatus (Shreve 1941). Amphib Reptile Conserv 8:25–32

    Google Scholar 

  • Ryan MJ (1985) The Túngara Frog: a study in sexual selection and communication. University of Chicago Press, Chicago

    Google Scholar 

  • Ryan MJ, Bernal XE, Rand AS (2007) Patterns of matting call preferences in túngara frogs, Physalameus pustulosus. J Evol Biol 20(6):2235–2247

    Article  CAS  PubMed  Google Scholar 

  • Ryan MJ, Rand AS (2003) Mate recognition, in túngara frogs: a review of some studies of brain, behavior, and evolution. Acta Zool Sin 49:721–726

    Google Scholar 

  • Saito S, Ohkita M, Saito CT, Takahashi K, Tominaga M, Ohta T (2016) Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches. J Biol Chem 291(21):11446–11459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanabria EA, Quiroga LB, Acosta JC (2005) Introducción de Rana catesbeiana (rana toro), em ambientes precordilleranos de la província de San Juan, Argentina. Multequina 14:65–68

    Google Scholar 

  • Schoegel LM, Daszak P, Cunningham AA, Speare R, Hill B (2010) Two amphibian diseases, chytridionmycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): an assessment. Dis Aquat Org 92(2–3):101–108

    Article  Google Scholar 

  • Seebacher F, Alford RA (1999) Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: seasonal variation and environmental correlates. J Herpetol 33(2):208–214

    Article  Google Scholar 

  • Segerman B (2020) The most frequently used sequencing technologies and assembly methods in different time segments of the bacterial surveillance and RefSeq genome databases. Front Cell Infect Microbiol 10:527102

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva ET, Reis EP, Feio RN, Filho OPR (2009) Diet of the invasive frog Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae) in Viçosa, Minas Gerais state, Brazil. S Am J Herpetol 4(3):286–294

    Article  Google Scholar 

  • Silva MC, Chibucos M, Munro JB, Daugherty S, Coelho MM, Silva JC (2020) Signature of adaptive evolution in olfactory receptor genes in Cory’s Shearwater supports molecular basis of smell in procellariiform seabirds. Sci Rep 10:1–11

    Google Scholar 

  • Sin SYW, Cloutier A, Nevitt G, Edwards SV (2019) Olfactory receptor subgenome and expression in a highly olfactory procellariiform seabird. Genetics 220(2):1–16

    Google Scholar 

  • Sin SYW, Cloutier A, Nevitt G, Edwards SV (2022) Olfactory receptor subgenome and expression in a highly olfactory procellariiform seabird. Genetics 220(2):1–16. https://doi.org/10.1093/genetics/iyab210

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiger SS, Fidler AE, Kempenaers B (2009) Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability. BMC Evol Biol 9:1–11

    Article  Google Scholar 

  • Still MB, Lea AM, Hofmann HA, Ryan MJ (2019) Multimodal stimuli regulate reproductive behavior and physiology in male túngara frogs. Hormone Behav 115:1–11

    Article  Google Scholar 

  • Streicher JW, Wellcome Sanger Institute Tree of Life Programme (2021) The genome sequence of the common toad, Bufo bufo (Linnaeus, 1758). Wellcome Open Res 6:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Lu F, Luo Y, Bie L, Xu L, Wang Y (2023) OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 23:W397–W403

    Article  Google Scholar 

  • Sun Y, Xiong Z, Xiang X, Liu S, Zhou W, Tu X, Zhong L, Wang L, Wu D, Zhang B, Zhu C, Yang M, Chen H, Li F, Zhou L, Feng S, Huang C, Zhang G, Irwin D, Hillis DM, Murphy RW, Yang H, Che J, Wang J, Zhang Y (2015) Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. PNAS 112(11):E1257–E1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touhara K (2007) Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assays. Neurochem Int 51(2–4):132–139

    Article  CAS  PubMed  Google Scholar 

  • Van der Linden C, Jakob S, Gupta P, Dulac C, Santoro SW (2018) Sex separation induces differences in the olfactory sensory repertoires of male and female mice. Nat Commun 4(9):5081

    Article  Google Scholar 

  • Vandewege MW, Mangum SF, Gabaldón T, Castoe TA, Ray DA, Hoffman FG (2016) Contrasting patterns of evolutionary diversification in the olfactory repertoires of reptile and bird genomes. Genome Biol Evol 8(3):470–480. https://doi.org/10.1093/gbe/evw013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chen L, Dong C, Chen B, Li B, Li X, Xu P (2021) Genome-wide identification and characterization of olfactory receptor genes in common carp (Cyprinus carpio). Gene 777:145468

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T, HuizheJin J, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49

  • Wang K, Tian S, Galindo-González J, Dávalos LM, Zhang Y, Zhao H (2020) Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats. Mol Biol 29:4366–4381

    Google Scholar 

  • Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Pond SLK (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35(3):773–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for etecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19(6):908–917

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Arguello JR, Li X, Ding Y, Zhou Q, Chen Y, Zhang Y, Zhao R, Brunet F, Peng L, Long M, Wang W (2008) Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 4:e3

    Article  PubMed  PubMed Central  Google Scholar 

  • Yohe LR, Fabbri M, Hanson M, Bhullar BS (2020) Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phyenotypic change. Curr Zool 66(5):505–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Yohe LR, Fabbri M, Lee D, Davies KTJ, Yohe TP, Sánchez MKR, Rengifo EM, Hall RP, Mutumi G, Hedrick BP, Sadier A, Simmons NB, Sears KE, Dumont E, Rossiter SJ, Bhullar BS, Dávalos LM (2022) Ecological constraints on highly evolvable olfactory receptor genes and morphology in neotropical bats. Evolution 76(10):2347–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yohe LR, Leiser-Miller LB, Kaliszewska ZA, Donat P, Santana SE, Dávalos LM (2021) Diversity of olfactory receptor repertoires is associated with dietary specialization in a genus of frugivorous bat. G3 Gene Genomes Genet 11(10):jkab260

    Article  Google Scholar 

  • Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ (2002) Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet 11(5):535–546

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Shykind BM, Lane RP, Tonnes-Priddy L, Ross JA, Walker M, Williams EM, Trask BJ (2003) Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternative splicing and unequal expression levels. Genome Biol 4(11):R71. https://doi.org/10.1186/gb-2003-4-11-r71

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JM, Trask BJ (2002) The sense of smell: genomics of vertebrate odorant receptors. Hum Mol Genet 11(10):1153–1160

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20(1):348–355

    Article  PubMed  Google Scholar 

  • Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Rodriguez I, Mombaerts P, Firestein S (2004) Odorant and vomeronasal receptor genes in two mouse genomes assemblies. Genomics 83:802–811

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu C, Zuker CS, Ryba JP (2003) Coding sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Schranz EM (2019) Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proc Natl Acad Sci USA 116(6):2165–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Zwaenepoel A, Xue JY, Kao SM, Li Z, Schranz ME, Peer YV (2021) Whole-Genome Microsynteny-Based Phylogeny of Angiosperms. Nat Commun 12(1):1–14

    Google Scholar 

  • Zhou C, Liu Y, Zheng X, Shang K, Cheng M, Wang L, Yang N, Yue B (2022) Characterization of olfactory receptor repertoires provides insights into the high-altitude adaption of the yak based on the chromosome-level genome. Int J Biol Macromol 209:220–230

    Article  CAS  PubMed  Google Scholar 

  • Zina J (2006) Communal nests in Physalaemus pustulosus (Amphibia: Leptodactylidae): experimental evidence for female oviposition preferences and protection against desiccation. Amphibia-Reptilia 27:148–150

    Article  Google Scholar 

  • Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 1(6): research0018.1

Download references

Acknowledgements

We would like to thank the Brazilian Coordination for Higher Education Personnel Training (CAPES/PROAP—Finance Code 001 and CAPES-Print) for the scholarships provided to JFS. DPB is grateful the Brazilian National Council for Scientific and Technological Development (CNPq #303646/2021-7, 443892/2020-2, and CNPq #401024/2022-9). We are grateful to Dr. Fabricio Almeida-Silva for helping with syntenet package and anonymous reviewers for their valuable criticisms that helped to improve this paper. We are grateful to NAPI Bioinformática of the Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná (FA)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pacheco Bruschi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Ananias Escalante.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, J.S., Bruschi, D.P. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 91, 793–805 (2023). https://doi.org/10.1007/s00239-023-10135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-023-10135-y

Keywords

Navigation