Skip to main content
Log in

Quest for the Best Evolutionary Model

  • Commentary
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

A Correction to this article was published on 14 January 2021

This article has been updated

Abstract

In the early 1980s, DNA sequencing became a routine and the increasing computing power opened the door to reconstruct molecular phylogenies using probabilistic approaches. DNA sequence alignments provided a large number of positions containing phylogenetic information, which could be extracted using explicit statistical models that described the mutation process using appropriate parameters. Consequently, an active quest started for building increasingly improved (more realistic) statistical models of nucleotide substitution. The simplest model assumed that nucleotide frequencies were in equilibrium and one single category of substitutions. Subsequent models allowed either unequal nucleotide frequencies or separate rates for transitions and transversions. The HKY85 model (Hasegawa et al. in J Mol Evol 22:160, 1985) combined elegantly both options into a single model, which became one of the most useful ones and has been the choice in many molecular phylogenetic studies ever since. The use of improved substitution models such as HKY85 allows reconstructing more accurate and reliable phylogenies, which in turn provide robust frameworks for understanding how biological diversity evolved and for performing a wealth of comparative studies in different disciplines such as ecology, biogeography, developmental biology, biochemistry, genomics, epidemiology, and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Change history

References

  • Abascal F, Posada D, Zardoya R (2007) MtArt: a new model of amino acid replacement for arthropoda. Mol Biol Evol 24:1

    Article  CAS  PubMed  Google Scholar 

  • Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459

    Article  CAS  PubMed  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) 2nd International Symposium on Information Theory. Budapest: Akadémiai Kiadó, Budapest, pp. 267–281

  • Amster G, Sella G (2016) Life history effects on the molecular clock of autosomes and sex chromosomes. Proc Natl Acad Sci USA 113:1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457

    Article  CAS  PubMed  Google Scholar 

  • Ansorge W, Sproat B, Stegemann J, Schwager C, Zenke M (1987) Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Res 15:4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550

    Article  CAS  PubMed  Google Scholar 

  • Cohen SN, Chang ACY, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Drummond AJ, Suchard MA (2010) Bayesian random local clocks, or one rate to rule them all. BMC Biol 8:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406

    Article  Google Scholar 

  • Gu X, Fu YX, Li WH (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 12:546

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Horai S (1991) Time of the deepest root for polymorphism in human mitochondrial DNA. J Mol Evol 32:37

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T-a (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160

    Article  CAS  PubMed  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. Univeristy of ILLINOIS PRESS, Urbana

    Google Scholar 

  • Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Edwards SV, Liu L (2020) The Multispecies coalescent model outperforms concatenation across diverse phylogenomic data sets. Syst Biol 69:795

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275

    Article  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Filipski A, Swarna V, Walker A, Hedges SB (2005) Placing confidence limits on the molecular age of the human–chimpanzee divergence. Proc Natl Acad Sci USA 102:18842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 14:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095

    Article  CAS  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An Improved general amino acid replacement matrix. Mol Biol Evol 25:1307

    Article  CAS  PubMed  Google Scholar 

  • Lemmon AR, Emme SA, Lemmon EM (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 61:727

    Article  CAS  PubMed  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Springer, New York, pp 391–398

    Google Scholar 

  • McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC (2012) Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res 22:746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moorjani P, Amorim CEG, Arndt PF, Przeworski M (2016) Variation in the molecular clock of primates. Proc Natl Acad Sci USA 113:10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217

    Article  Google Scholar 

  • Rota-Stabelli O, Yang Z, Telford MJ (2009) MtZoa: a general mitochondrial amino acid substitutions model for animal evolutionary studies. Mol Phylogenet Evol 52:268

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Brownlee GG, Barrell BG (1965) A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol 13:373

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200

    Article  CAS  PubMed  Google Scholar 

  • Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539

    Article  PubMed  Google Scholar 

  • Smith SD, Pennell MW, Dunn CW, Edwards SV (2020) Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol Evol 35:415

    Article  PubMed  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57

    Google Scholar 

  • Wake DB (1991) Homoplasy: the result of natural selection, or evidence of design limitations? Am Nat 138:543

    Article  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691

    Article  CAS  PubMed  Google Scholar 

  • Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S (2011) Dating primate divergences through an integrated analysis of palaeontological and molecular data. Syst Biol 60:16

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74:5088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396

    CAS  PubMed  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol Biol Evol 14:717

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Zardoya.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare that are relevant to the content of this article.

Human and Animal Rights and Informed Consent

The research does not involve human participants and/or animals. No clinical research was conducted and thus, no informed consent was required.

Additional information

Handling Editor: Aaron Goldman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this was revised: Dr. Taka-aki Yano′s photograph in Figure 2 has been replaced

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zardoya, R. Quest for the Best Evolutionary Model. J Mol Evol 89, 146–150 (2021). https://doi.org/10.1007/s00239-020-09971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09971-z

Keywords

Navigation