Skip to main content
Log in

Primitive Dark-Phase Cycle of Photosynthesis at the Origin of Life

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Simple phosphorylation, isomerization, and aldolisation reactions starting from glyceraldehyde have the potential to lead to the synthesis of pre-ribonucleotide polymers through a primitive form of the Calvin cycle (dark phase of photosynthesis) involving the unusual formation of phospho-nonulose phosphate and phospho-deculose phosphate, as key intermediates. These reactions involve activated phosphates which are generated from schreibersite minerals, geochemically available in Hadean times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite. Chem Commun 22:2344–2346

    Article  Google Scholar 

  • Bryant DE, Greenfield D, Walshaw RD, Johnson BRG, Herschy B, Smith C, Pasek MA, Telford R, Scowen I, Munshi T, Edwards HGM, Cousins CR, Crawford IA, Kee TP (2013) Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochim Cosmochim Acta 109:90–112

    Article  CAS  Google Scholar 

  • Burcar B, Pasek M, Gull M, Cafferty BJ, Velasco F, Hud NV, Menor-Salván C (2016) Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew Chem Int Ed 55:13249–13253

    Article  CAS  Google Scholar 

  • Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443

    Article  CAS  PubMed  Google Scholar 

  • Gull M, Mojica MA, Fernandez FM, Gaul DA, Orlando TM, Liotta CL, Pasek MA (2015) Nucleoside phosphorylation by the mineral schreibersite. Sci Rep 5:17198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gull M, Cafferty BJ, Hud NV, Pasek MA (2017) Silicate-promoted phosphorylation of glycerol in non-aqueous solvents: a prebiotically plausible route to organophosphates. Life 7:E29

    Article  PubMed  Google Scholar 

  • Kee TP, Bryant DE, Herschy B, Marriott KE, Cosgrove NE, Pasek MA, Atlas ZD, Cousins CR (2013) Phosphate activation via reduced oxidation state phosphorus (P). Mild routes to condensed-p energy currency molecules. Life 3:386–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller MA, Turchyn AV, Ralser M (2014) Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol Syst Biol 10:725

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M (2016) Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Sci Adv 2:e1501235

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig M (2015) Phosphoribosylphosphate and phosphoribosylnicotinate pairing with phosphoribosylamine at the origin of the RNA world. J Theor Biol 379:94–97

    Article  CAS  PubMed  Google Scholar 

  • Messner CB, Driscoll PC, Piedrafita G, De Volder MFL, Ralser M (2017) Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice. Proc Natl Acad Sci USA 114:7403–7407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchowska KB, Varma SJ, Chevallot-Beroux E, Lethuillier-Karl L, Li G, Moran J (2017) Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 1:1716–1721

    Article  PubMed  PubMed Central  Google Scholar 

  • Osterberg R, Orgel LE, Lohrmann R (1973) Further studies of urea-catalyzed phosphorylation reactions. J Mol Evol 2:231–234

    Article  CAS  PubMed  Google Scholar 

  • Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasek MA (2017) Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335

    Article  CAS  Google Scholar 

  • Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5:515–535

    Article  CAS  PubMed  Google Scholar 

  • Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71:1721–1736

    Article  CAS  Google Scholar 

  • Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z (2013) Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc Natl Acad Sci USA 110:10089–10094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereto JG, Velasco AM, Becerra A, Lazcano A (1999) Comparative biochemistry of CO2 fixation and the evolution of the autotrophy. Int Microbiol 2:3–10

    CAS  PubMed  Google Scholar 

  • Rivas M, Becerra A, Lazcano A (2018) On the early evolution of catabolic pathways: a comparative genomics approach. I. The cases of glucose, ribose, and the nucleobases catabolic routes. J Mol Evol 86:27–46

    Article  CAS  PubMed  Google Scholar 

  • Sephton HH, Richtmyer NK (1963) Isolation of D-erythro-L-gluco-nonulose from the avocado. J Org Chem 28:2388–2390

    Article  CAS  Google Scholar 

  • Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963

    Article  PubMed  Google Scholar 

  • Sutherland JD (2016) The origin of life—out of the blue. Angew Chem Int Ed 55:104–121

    Article  CAS  Google Scholar 

  • Zachar I, Szathmary E (2010) A new replicator: a theoretical framework for analysing replication. BMC Biol 8:21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Koenig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koenig, M. Primitive Dark-Phase Cycle of Photosynthesis at the Origin of Life. J Mol Evol 86, 167–171 (2018). https://doi.org/10.1007/s00239-018-9840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-018-9840-1

Navigation