Skip to main content
Log in

Molecular Evolution of Nitrogen Assimilatory Enzymes in Marine Prasinophytes

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen A, Vardi A, Bowler C (2006) An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Curr Opin Plant Biol 9:264–273

    Article  CAS  PubMed  Google Scholar 

  • Allen A, Dupont C, Oborník M, Horák A, Nunes-Nesi A, McCrow J, Zheng H, Johnson D, Hu H, Fernie A, Bowler C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207. doi:10.1038/nature10074

    Article  CAS  PubMed  Google Scholar 

  • Allen LZ, Allen E, Badger J, McCrow J, Paulsen I, Elbourne L, Thiagarajan M, Rusch D, Nealson K, Williamson S, Venter J, Allen A (2012) Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME J 6:1403–1414. doi:10.1038/ismej.2011.201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182:608–620

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Flegontov P, Oborník M, Cihlář J, Pain A, Lukeš J, Keeling PJ (2012) Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol 4:738–747

    Article  PubMed Central  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1986) The kingdom chromista: origin and systematics. Progr Phycol Res 4:309–347

    Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  CAS  PubMed  Google Scholar 

  • Clerissi C, Grimsley N, Desdevises Y (2013) Genetic exchanges of inteins between prasinoviruses (Phycodnaviridae). Evolution 67:18–33

    Article  CAS  PubMed  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deschamps P, Moreira D (2012) Reevaluating the green contribution to diatom genomes.Genome Biol Evol 4:683–688. doi: 10.1093/gbe/evs053

  • Dorrell RG, Smith AG (2011) Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10:856–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Fischer K, Barbier GG, Hecht H-J, Mendel RR, Campbell WH, Schwarz G (2005) Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Plant Cell 17:1167–1179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franzén L-G, Rochaix J-D, von Heijne G (1990) Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and higher plant chloroplast presequences. FEBS Lett 260:169–172

    Article  Google Scholar 

  • Ghoshroy S, Robertson DL (2012) Molecular evolution of glutamine synthetase II and III in the chromalveolates. J Phycol 48:768–783

    Article  CAS  Google Scholar 

  • Ghoshroy S, Binder M, Tartar A, Robertson DL (2010) Molecular evolution of glutamine synthetase II: phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution. BMC Evol Biol 10:198

    Article  PubMed Central  PubMed  Google Scholar 

  • Green LS, Yee BC, Buchanan BB, Kamide K, Sanada Y, Wada K (1991) Ferredoxin and ferredoxin-NADP reductase from photosynthetic and nonphotosynthetic tissues of tomato. Plant Physiol 96:1207–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimsley NH, Thomas R, Kegely JU, Jacquetz S, Moreau H, Desdevises Y (2012) Genomics of algal host–virus interactions. Chapter 9. Advances in Botanical Research, Volume 64. Elsevier Ltd. ISSN 0065-2296. http://dx.doi.org/10.1016/B978-0-12-391499-6.00009-8

  • Hanke GT, Okutani S, Satomi Y, Takao T, Suzuki A, Hase T (2005) Multiple iso-proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant, Cell Environ 28:1146–1157. doi:10.1111/j.1365-3040.2005.01352.x

    Article  CAS  Google Scholar 

  • Huang J (2013) Horizontal gene transfer in eukaryotes: the weak-link model. BioEssays 35:868–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Yue J (2013) Horizontal gene transfer in the evolution of photosynthetic eukaryotes. J Syst Evol 51:13–29

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Kamp A, de Beer D, Nitsch J, Lavik G, Stief P (2011) Diatoms respire nitrate to survive dark and anoxic conditions. Proc Natl Acad Sci USA 108:5649–5654. doi:10.1073/pnas.1015744108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066. doi:10.1093/nar/gkf436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618. doi:10.1038/nrg2386

    Article  CAS  PubMed  Google Scholar 

  • Leliaert F, Verbruggen H, Zechman FW (2011) Into the deep: new discoveries at the base of the green plant phylogeny. BioEssays 33:683–684

    Article  PubMed  Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Maddison W, Maddison D (2000) MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates Sunderland, MA

    Google Scholar 

  • McDonald SM, Plant JN, Worden AZ (2010) The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of Micromonas. Mol Biol Evol 27:2268–2283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monier A, Welsh RM, Gentemann C, Weinstock G, Sodergren E, Armbrust EV, Eisen JA, Worden AZ (2012) Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ Microbiol 14:162–176. doi:10.1111/j.1462-2920.2011.02576.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Nedelcu AM, Blakney AJC, Logue KD (2009) Functional replacement of a primary metabolic pathway via multiple independent eukaryote-to-eukaryote gene transfers and selective retention. J Evol Biol 22:1882–1894. doi:10.1111/j.1420-9101.2009.01797.x

    Article  CAS  PubMed  Google Scholar 

  • Not F, Massana R, Latasa M, Marie D, Colson C, Eikrem W, Pedros-Alio C, Vaulot D, Simon N (2005) Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol Oceanogr 50:1677–1686

    Article  CAS  Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev IV (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710. doi:10.1073/pnas.0611046104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Privalle LS, Privalle CT, Leonardy NJ, Kamin H (1985) Interactions between spinach ferredoxin-nitrite reductase and its substrates. Evidence for the specificity of ferredoxin. J Biol Chem 260:14344–14350

    CAS  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucl Acids Res 40:D290–D301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (1997) Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability. J Bacteriol 179:2678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson DL, Alberte RS (1996) Isolation and characterization of glutamine synthetase from the marine diatom Skeletonema costatum. Plant Physiol 111:1169–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson DL, Tartar A (2006) Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis. Mol Biol Evol 23:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Schönknecht G, Weber APM, Lercher MJ (2014) Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36:9–20

    Article  PubMed  Google Scholar 

  • Seabra A, Silva L, Carvalho H (2013) Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol 13:137

    Article  PubMed Central  PubMed  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Solomon CM, Collier JL, Berg GM, Glibert PM (2010) Role of urea in microbial metabolism in acquatic systems: a biochemical and molecular review. Aquat Microb Ecol 59:67–88. doi:10.3354/ame01390

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stolz JF, Basu P (2002) Evolution of nitrate reductase: molecular and structural variations on a common function. ChemBioChem 3:198–206

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:e144. doi:10.1371/journal.pbio.0030144

    Article  PubMed Central  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses-major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648

    Article  CAS  PubMed  Google Scholar 

  • Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, McDonald SM, Parker MS, Rombauts S, Salamov A, Von Dassow P, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lanier W, Lindquist EA, Lucas S, Mayer KF, Moreau H, Not F, Otillar R, Panaud O, Pangilinan J, Paulsen I, Piegu B, Poliakov A, Robbens S, Schmutz J, Toulza E, Wyss T, Zelensky A, Zhou K, Armbrust EV, Bhattacharya D, Goodenough UW, Van de Peer Y, Grigoriev IV (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Hu X, Sun H, Yang Y, Huang J (2012) Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3:1152. doi:10.1038/ncomms2148

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant (IOS105207) from the National Science Foundation (United States) to D. L. R. The authors thank Alfred Justo and Romina Gazis for their helpful comments on the manuscript. We also thank two anonymous reviewers for their constructive comments and suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohini Ghoshroy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshroy, S., Robertson, D.L. Molecular Evolution of Nitrogen Assimilatory Enzymes in Marine Prasinophytes. J Mol Evol 80, 65–80 (2015). https://doi.org/10.1007/s00239-014-9659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9659-3

Keywords

Navigation