Skip to main content
Log in

Testing Introgressive Hybridization Hypotheses Using Statistical Network Analysis of Nuclear and Cytoplasmic Haplotypes in the Leaf Beetle Timarcha goettingensis Species Complex

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Previous studies of leaf beetles (Chrysomelidae) in the Timarcha goettingensis species complex using mitochondrial (cox2) and nuclear (ITS-2 rRNA) markers revealed two main clades confined to the Iberian Peninsula and the rest of Europe but showing incongruent distributions indicative of gene exchange between both groups. Because of the anastomosing nature of hybridization, which disrupts the cladistic structure of character variation, phylogenetic trees might be inappropriate to represent and study this process. Here we test for evidence of hybridization in the T. goettingensis complex by analyzing the extra homoplasy arising in hybrid genomes from the simultaneous analysis of genetically independent markers. Haplotype networks obtained by Templeton’s statistical parsimony analysis were generated for combined (concatenated) cox2 and ITS-2 sequences from 167 individuals of the T. goettingensis complex. Networks were used to detect runs of homoplasious characters physically clustered along a nucleotide sequence, as evidence for recombination between both gene partitions. A hypergeometric tail probability for the chance occurrence of physically clustered character changes on the connections linking networks of genotypes was applied. The test recognized two instances of statistically significant clustering, indicating the presence of cox2–ITS-2 mosaic genotypes and reticulation of both main T. goettingensis clades, supporting the reticulate origin of samples of T. maritima in southwestern France and T. sinuatocollis/T. monserratensis in the eastern Pyrenees. Although the assessment of reticulation in DNA sequences does not provide direct proof for hybridization, the geographical distribution of mosaic genotypes in the vicinity of “pure” genotypes supports the effect of gene flow between the two divergent lineages. The study demonstrates the utility of statistical parsimony networks for the detection of hybrids in the growing number of phylogeographic studies based on multiple gene markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Google Scholar 

  • Bechyné J, (1948) Contribution à la connaissance du genre Timarcha Latr. 12: Etudes phylogénétiques et zoogéographiques (Col. Phytophaga, Chrysomelidae). Sbor Narod Mus Praze 4:1–62

    Google Scholar 

  • Brower AVZ, DeSalle R, Vogler AP (1996) Gene trees, species trees, and Systematics: A cladistic perspective. Annu Rev Ecol Syst 27:423–450

    Article  Google Scholar 

  • Chen SH, (1934) Sur la position systématique du genre Timarcha Latr. (Col. Chrysomelidae). Bull Soc Entomol Fr 39:35–39

    Google Scholar 

  • Chevin H, (1992) Contribution à la biologie des Timarcha (Col. Chrysomelidae). VI. Timarcha maritima Perris. Entomologiste 48:133–140

    Google Scholar 

  • Chevin H, (1993) Contribution à la biologie des Timarcha (Col. Chrysomelidae). VII. Timarcha cyanescens Fairm. et All. Entomologiste 49:51–56

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, (1994) Intraspecific cladogram estimation: accuracy at higher levels of divergence. Syst Biol 43:222–235

    Google Scholar 

  • Crandall KA, Templeton AR (1999) Statistical methods for detecting recombination. In: Crandall KA (ed) The evolution of HIV. Johns Hopkins University Press, Baltimore, pp 153–176

    Google Scholar 

  • Doyle JJ, (1995) The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Syst Bot 20:574–588

    Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Google Scholar 

  • Felsenstein J, (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Funk VA, (1985) Phylogenetic pattern and hybridization. Ann Mo Bot Gard 72:681–715

    Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Gómez-Zurita J, Vogler AP (2003) Incongruent nuclear and mitochondrial phylogeographic patterns in the Timarcha goettingensis species complex (Coleoptera, Chrysomelidae). J Evol Biol 16:833–843

    PubMed  Google Scholar 

  • Gómez-Zurita J, Juan C, Petitpierre E (2000a) The evolutionary history of the genus Timarcha (Coleoptera, Chrysomelidae) inferred from mitochondrial COII gene and partial 16S rDNA sequences. Mol Phylogenet Evol 14:304–317

    Google Scholar 

  • Gómez-Zurita J, Petitpierre E, Juan C (2000b) Nested cladistic analysis, phylogeography and speciation in the Timarcha goettingensis complex (Coleoptera, Chrysomelidae). Mol Ecol 9:557–570

    Google Scholar 

  • Gómez-Zurita J, Juan C, Petitpierre E (2000c) Sequence, secondary structure and phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) in the Timarcha leaf beetles (Coleoptera: Chrysomelidae). Insect Mol Biol 9:591–604

    Google Scholar 

  • González-Megías A, Gómez JM, Sánchez Piñero F (2004) Ecology of the high mountain chrysomelid Timarcha lugens Rosenh. (Chrysomelinae). In: Jolivet P, Santiago-Blay JA, Schmitt M (eds) New developments on the biology of Chrysomelidae. SPB Academic, The Hague, pp 553–563

    Google Scholar 

  • Hewitt GM (1993) Postglacial distribution and species substructure: lessons from pollen, insects and hybrid zones. In: Lees DR, Edwards D (eds) Evolutionary patterns and processes. Academic Press, London, pp 97–123

    Google Scholar 

  • Hey J, Machado CA (2003) The study of structured populations—new hope for a difficult and divided science. Nat Rev Genet 4:535–543

    Article  CAS  PubMed  Google Scholar 

  • Holder MT, Anderson JA, Holloway AK (2001) Difficulties in detecting hybridization. Syst Biol 50:978–982

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Hillis D (1993) Success of phylogenetic methods in the four-taxon case. Syst Biol 42:247–264

    Google Scholar 

  • Humphries CJ (1983) Primary data in hybrid analysis. In: Platnick NI, Funk VA (eds) Advances in Cladistics: Proceedings of the Second Meeting of the Willi Hennig Society. Columbia University Press, New York, pp 89–103

    Google Scholar 

  • Jolivet P (1994) Remarks on the biology and biogeography of Timarcha (Chrysomelidae: Chrysomelinae). In: Furth DG (ed) Proceedings of the Third International Symposium on the Chrysomelidae, Beijing 1992. Backhuys, Leiden, pp 85–97

    Google Scholar 

  • Machado CA, Hey J (2003) The causes of phylogenetic conflict in a classic Drosophila species group. Proc R Soc Lond B 270:1193–1202

    Article  CAS  Google Scholar 

  • Machado CA, Kliman RM, Markert JA, Hey J (2002) Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol Biol Evol 19:472–488

    CAS  PubMed  Google Scholar 

  • McDade LA, (1992) Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 46:1329–1346

    Google Scholar 

  • McDade LA (2000) Hybridization and phylogenetics. Special insights from morphology. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, DC, pp 146–164

    Google Scholar 

  • Moore WS, (1995) Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726

    Google Scholar 

  • Petitpierre E, (1970) Variaciones morfológicas y de la genitalia en las Timarcha Lat. (Col. Chrysomelidae). Publ Inst Biol Apl 48:5–16

    Google Scholar 

  • Posada D (2001) Matrix version 20. Department of Zoology, Brigham Young University, Provo, UT

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (2002) The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54:396–402

    CAS  PubMed  Google Scholar 

  • R Development Core Team (2003). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-00-3, URL http://www.R-project.org

  • Rieseberg LH, Morefield JD (1995) Character expression, phylogenetic reconstruction, and the detection of reticulate evolution. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St. Louis, pp 333–353

    Google Scholar 

  • Sang T, Zhong Y (2000) Testing hybridization hypotheses based on incongruent gene trees. Syst Biol 49:422–434

    CAS  PubMed  Google Scholar 

  • Shaw KL, (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci USA 99:16122–16127

    Article  CAS  PubMed  Google Scholar 

  • Sota T, Ishikawa R, Ujiie M, Kusumoto F, Vogler AP (2001) Extensive trans-species mitochondrial polymorphisms in the carabid beetles Carabus subgenus Ohomopterus caused by repeated introgressive hybridization. Mol Ecol 10:2833–2847

    CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Templeton AR, (2001) Using phylogeographic analyses of gene trees to test species status and processes. Mol Ecol 10:779–791

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  • Wiens JJ, Penkrot TA (2002) Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51:69–91

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all colleagues who have contributed to this work with samples during several years of research on the genus Timarcha. Ignacio Ribera (MNCN, Madrid) provided useful comments on a preliminary version of the manuscript. We are indebted to Rafael Zardoya (MNCN, Madrid), Brent Emerson (UEA, Norwich), David Posada (University of Vigo, Vigo), Martin Kreitman (University of Chicago, Chicago), and an anonymous reviewer for their support of our work and for constructive comments and suggestions that significantly improved this study. This work was funded by a Marie Curie Fellowship of the European Community under research contract number HPMF-CT-2000-00744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gómez-Zurita.

Additional information

[Reviewing Editor: Dr. Rafael Zardoya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Zurita, J., Vogler, A.P. Testing Introgressive Hybridization Hypotheses Using Statistical Network Analysis of Nuclear and Cytoplasmic Haplotypes in the Leaf Beetle Timarcha goettingensis Species Complex. J Mol Evol 62, 421–433 (2006). https://doi.org/10.1007/s00239-004-0329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0329-8

Keywords

Navigation