Skip to main content
Log in

Thalamocortical functional connectivity in infants with prenatal opioid exposure correlates with severity of neonatal opioid withdrawal syndrome

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Prenatal opioid exposure (POE) is a growing public health concern due to its associated adverse outcomes including neonatal opioid withdrawal syndrome (NOWS). The aim of this study was to assess alterations in thalamic functional connectivity in neonates with POE using resting-state functional magnetic resonance imaging (rs-fMRI) and identify whether these altered connectivity measures were associated with NOWS severity.

Methods

In this prospective, IRB-approved study, we performed rs-fMRI in 19 infants with POE and 20 healthy control infants without POE. Following standard pre-processing, we performed seed-based functional connectivity analysis with the right and left thalamus as the regions of interest. We performed post hoc analysis in the prenatal opioid exposure group to identify associations of altered thalamocortical connectivity with severity of NOWS. P value of < .05 was considered statistically significant.

Results

There were several regions of significantly altered thalamic to cortical functional connectivity in infants with POE compared to the healthy infants. Distinct regions of thalamocortical functional connectivity correlated with maximum modified Finnegan score. Association between thalamocortical connectivity and severity of NOWS was nominally modified by maternal psychological conditions and polysubstance use.

Conclusion

Our findings reveal prenatal opioid exposure-related alterations in thalamic functional connectivity in the infant brain that are correlated with severity of NOWS. Future studies may benefit from evaluation of thalamocortical resting state functional connectivity in infants with POE to help  stratify risk of long term neurodevelopmental outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

R:

Right

L:

Left

POE:

Prenatal opioid exposure

NOWS:

Neonatal opioid withdrawal syndrome

NAS:

Neonatal abstinence syndrome

ROI:

Region of interest

MRI:

Magnetic resonance imaging

rs-fMRI:

Resting-state functional magnetic resonance imaging

FD:

Framewise displacement

DVARS:

Temporal derivative of time courses, root-mean-squared variance over voxels

ADHD:

Attention deficit hyperactivity disorder

References

  1. Ko JY, D’Angelo DV, Haight SC, Morrow B, Cox S, Salvesen von Essen B, Strahan AE, Harrison L, Tevendale HD, Warner L, Kroelinger CD, Barfield WD (2020) Vital signs: prescription opioid pain reliever use during pregnancy - 34 U.S. jurisdictions, 2019. MMWR Morb Mortal Wkly Rep 69(28):897–903

    Article  Google Scholar 

  2. Haight SC, Ko JY, Tong VT, Bohm MK, Callaghan WM (2018) Opioid use disorder documented at delivery hospitalization - United States, 1999–2014. MMWR Morb Mortal Wkly Rep 67(31):845–849. https://doi.org/10.15585/mmwr.mm6731a1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Merhar SL, Kline JE, Braimah A, Kline-Fath BB, Tkach JA, Altaye M, He L, Parikh NA (2020) Prenatal opioid exposure is associated with smaller brain volumes in multiple regions. Pediatr Res. https://doi.org/10.1038/s41390-020-01265-w

    Article  PubMed  PubMed Central  Google Scholar 

  4. McQueen K, Murphy-Oikonen J (2016) Neonatal abstinence syndrome. N Engl J Med 375(25):2468–2479. https://doi.org/10.1056/NEJMra1600879

    Article  PubMed  Google Scholar 

  5. Maguire DJ, Taylor S, Armstrong K, Shaffer-Hudkins E, Germain AM, Brooks SS, Cline GJ, Clark L (2016) Long-term outcomes of infants with neonatal abstinence syndrome. Neonatal Netw 35(5):277–286. https://doi.org/10.1891/0730-0832.35.5.277

    Article  PubMed  Google Scholar 

  6. Khan L (2020) Neonatal abstinence syndrome. Pediatr Ann 49(1):e3–e7. https://doi.org/10.3928/19382359-20191211-01

    Article  PubMed  Google Scholar 

  7. Jansson LM, Velez M, Harrow C (2009) The opioid-exposed newborn: assessment and pharmacologic management. J Opioid Manag 5(1):47–55

    Article  Google Scholar 

  8. Azuine RE, Ji Y, Chang HY, Kim Y, Ji H, DiBari J, Hong X, Wang G, Singh GK, Pearson C, Zuckerman B, Surkan PJ, Wang X (2019) Prenatal risk factors and perinatal and postnatal outcomes associated with maternal opioid exposure in an urban, low-income, multiethnic US population. JAMA Netw Open 2(6):e196405. https://doi.org/10.1001/jamanetworkopen.2019.6405

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mactier H (2013) Neonatal and longer term management following substance misuse in pregnancy. Early Hum Dev 89(11):887–892. https://doi.org/10.1016/j.earlhumdev.2013.08.024

    Article  PubMed  Google Scholar 

  10. Yeoh SL, Eastwood J, Wright IM, Morton R, Melhuish E, Ward M, Oei JL (2019) Cognitive and motor outcomes of children with prenatal opioid exposure: a systematic review and meta-analysis. JAMA Netw Open 2(7):e197025. https://doi.org/10.1001/jamanetworkopen.2019.7025

    Article  PubMed  PubMed Central  Google Scholar 

  11. Merhar SL, Parikh NA, Braimah A, Poindexter BB, Tkach J, Kline-Fath B (2019) White matter injury and structural anomalies in infants with prenatal opioid exposure. AJNR Am J Neuroradiol 40(12):2161–2165. https://doi.org/10.3174/ajnr.A6282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan Q, Rubic M, Seah J, Rae C, Wright IM, Kaltenbach K, Feller JM, Abdel-Latif ME, Chu C, Oei JL, group BOBC (2014) Do maternal opioids reduce neonatal regional brain volumes? A pilot study J Perinatol 34(12):909–913. https://doi.org/10.1038/jp.2014.111

    Article  CAS  PubMed  Google Scholar 

  13. Walhovd KB, Watts R, Amlien I, Woodward LJ (2012) Neural tract development of infants born to methadone-maintained mothers. Pediatr Neurol 47(1):1–6. https://doi.org/10.1016/j.pediatrneurol.2012.04.008

    Article  PubMed  Google Scholar 

  14. Monnelly VJ, Anblagan D, Quigley A, Cabez MB, Cooper ES, Mactier H, Semple SI, Bastin ME, Boardman JP (2018) Prenatal methadone exposure is associated with altered neonatal brain development. NeuroImage Clinical 18:9–14. https://doi.org/10.1016/j.nicl.2017.12.033

    Article  PubMed  Google Scholar 

  15. Salzwedel AP, Grewen KM, Vachet C, Gerig G, Lin W, Gao W (2015) Prenatal drug exposure affects neonatal brain functional connectivity. J Neurosci 35(14):5860–5869. https://doi.org/10.1523/JNEUROSCI.4333-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Radhakrishnan R, Elsaid NMH, Sadhasivam S, Reher TA, Hines AC, Yoder KK, Saykin AJ, Wu YC (2020) Resting state functional MRI in infants with prenatal opioid exposure-a pilot study. Neuroradiology. https://doi.org/10.1007/s00234-020-02552-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Merhar SL, Jiang W, Parikh NA, Yin W, Zhou Z, Tkach JA, Wang L, Kline-Fath BM, He L, Braimah A, Vannest J, Lin W (2021) Effects of prenatal opioid exposure on functional networks in infancy. Dev Cogn Neurosci 51:100996. https://doi.org/10.1016/j.dcn.2021.100996

    Article  PubMed  PubMed Central  Google Scholar 

  18. Radhakrishnan R, Grecco G, Stolze K, Atwood B, Jennings SG, Lien IZ, Saykin AJ, Sadhasivam S (2021) Neuroimaging in infants with prenatal opioid exposure: current evidence, recent developments and targets for future research. J Neuroradiol 48(2):112–120. https://doi.org/10.1016/j.neurad.2020.09.009

    Article  PubMed  Google Scholar 

  19. Salzwedel AP, Grewen KM, Goldman BD, Gao W (2016) Thalamocortical functional connectivity and behavioral disruptions in neonates with prenatal cocaine exposure. Neurotoxicol Teratol 56:16–25. https://doi.org/10.1016/j.ntt.2016.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang L, Oishi K, Skranes J, Buchthal S, Cunningham E, Yamakawa R, Hayama S, Jiang CS, Alicata D, Hernandez A, Cloak C, Wright T, Ernst T (2016) Sex-specific alterations of white matter developmental trajectories in infants with prenatal exposure to methamphetamine and tobacco. JAMA Psychiat 73(12):1217–1227. https://doi.org/10.1001/jamapsychiatry.2016.2794

    Article  Google Scholar 

  21. Donald KA, Eastman E, Howells FM, Adnams C, Riley EP, Woods RP, Narr KL, Stein DJ (2015) Neuroimaging effects of prenatal alcohol exposure on the developing human brain: a magnetic resonance imaging review. Acta Neuropsychiatr 27(5):251–269. https://doi.org/10.1017/neu.2015.12

    Article  PubMed  Google Scholar 

  22. Donald KA, Ipser JC, Howells FM, Roos A, Fouche JP, Riley EP, Koen N, Woods RP, Biswal B, Zar HJ, Narr KL, Stein DJ (2016) Interhemispheric functional brain connectivity in neonates with prenatal alcohol exposure: preliminary findings. Alcohol Clin Exp Res 40(1):113–121. https://doi.org/10.1111/acer.12930

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sherman MS, Guillery RW (2001) Exploring the Thalamus. Academic Press. https://doi.org/10.1016/B978-012305460-9/50015-0

    Article  Google Scholar 

  24. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1 Suppl):S173-186. https://doi.org/10.1016/j.neuroimage.2008.10.055

    Article  PubMed  Google Scholar 

  25. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. https://doi.org/10.1002/hbm.10062

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208-219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  27. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

    Article  PubMed  Google Scholar 

  28. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL Neuroimage 62(2):782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  29. Afyouni S, Nichols TE (2018) Insight and inference for DVARS. Neuroimage 172:291–312. https://doi.org/10.1016/j.neuroimage.2017.12.098

    Article  PubMed  Google Scholar 

  30. Shi F, Yap P-T, Wu G, Jia H, Gilmore JH, Lin W, Shen D (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PLoS ONE 6(4):e18746

    Article  CAS  Google Scholar 

  31. Avants B, Tustison N, Song G, Cook P, Klein A, Gee J (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044

    Article  Google Scholar 

  32. Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14(6):1370–1386. https://doi.org/10.1006/nimg.2001.0931

    Article  CAS  PubMed  Google Scholar 

  33. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541. https://doi.org/10.1002/mrm.1910340409

    Article  CAS  PubMed  Google Scholar 

  34. Simons LE, Pielech M, Erpelding N, Linnman C, Moulton E, Sava S, Lebel A, Serrano P, Sethna N, Berde C, Becerra L, Borsook D (2014) The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome. Pain 155(9):1727–1742. https://doi.org/10.1016/j.pain.2014.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM (2004) Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21(4):1732–1747. https://doi.org/10.1016/j.neuroimage.2003.12.023

    Article  PubMed  Google Scholar 

  36. Sakaki M, Nga L, Mather M (2013) Amygdala functional connectivity with medial prefrontal cortex at rest predicts the positivity effect in older adults' memory. J Cogn Neurosci 25(8):1206–1224. https://doi.org/10.1162/jocn_a_00392

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ (2018) The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc Lond B Biol Sci 373(1742):20170028. https://doi.org/10.1098/rstb.2017.0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu Y, Wienecke CF, Nachtrab G, Chen X (2016) A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530(7589):219–222. https://doi.org/10.1038/nature16954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goedecke L, Bengoetxea X, Blaesse P, Pape HC, Jungling K (2019) micro-opioid receptor-mediated downregulation of midline thalamic pathways to basal and central amygdala. Sci Rep 9(1):17837. https://doi.org/10.1038/s41598-019-54128-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ (2018) The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc Lond B Biol Sci 373 (1742). https://doi.org/10.1098/rstb.2017.0028

  41. Denier N, Schmidt A, Gerber H, Vogel M, Huber CG, Lang UE, Riecher-Rossler A, Wiesbeck GA, Radue EW, Walter M, Borgwardt S (2015) Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment. Hum Brain Mapp 36(12):5287–5300. https://doi.org/10.1002/hbm.23011

    Article  PubMed  PubMed Central  Google Scholar 

  42. Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89(4):1379–1412. https://doi.org/10.1152/physrev.00005.2009

    Article  PubMed  Google Scholar 

  43. Swick D, Ashley V, Turken AU (2008) Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci 9:102. https://doi.org/10.1186/1471-2202-9-102

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rudebeck PH, Rich EL (2018) Orbitofrontal cortex. Curr Biol 28(18):R1083–R1088. https://doi.org/10.1016/j.cub.2018.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55(1):11–29. https://doi.org/10.1016/S0278-2626(03)00277-X

    Article  PubMed  Google Scholar 

  46. Rolls ET (2019) The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia 128:14–43. https://doi.org/10.1016/j.neuropsychologia.2017.09.021

    Article  PubMed  Google Scholar 

  47. Gomez-Beldarrain M, Harries C, Garcia-Monco JC, Ballus E, Grafman J (2004) Patients with right frontal lesions are unable to assess and use advice to make predictive judgments. J Cogn Neurosci 16(1):74–89. https://doi.org/10.1162/089892904322755575

    Article  PubMed  Google Scholar 

  48. Berlin HA, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127(Pt 5):1108–1126. https://doi.org/10.1093/brain/awh135

    Article  CAS  PubMed  Google Scholar 

  49. Berlin HA, Rolls ET, Iversen SD (2005) Borderline personality disorder, impulsivity, and the orbitofrontal cortex. Am J Psychiatry 162(12):2360–2373. https://doi.org/10.1176/appi.ajp.162.12.2360

    Article  PubMed  Google Scholar 

  50. Tegelbeckers J, Kanowski M, Krauel K, Haynes JD, Breitling C, Flechtner HH, Kahnt T (2018) Orbitofrontal Signaling of Future Reward is Associated with Hyperactivity in Attention-Deficit/Hyperactivity Disorder. J Neurosci 38(30):6779–6786. https://doi.org/10.1523/JNEUROSCI.0411-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weitz AJ, Lee HJ, Choy M, Lee JH (2019) Thalamic Input to Orbitofrontal Cortex Drives Brain-wide, Frequency-Dependent Inhibition Mediated by GABA and Zona Incerta. Neuron 104(6):1153-1167 e1154. https://doi.org/10.1016/j.neuron.2019.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smyser CD, Neil JJ (2015) Use of resting-state functional MRI to study brain development and injury in neonates. Semin Perinatol 39(2):130–140. https://doi.org/10.1053/j.semperi.2015.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  53. Salzwedel A, Chen G, Chen Y, Grewen K, Gao W (2020) Functional dissection of prenatal drug effects on baby brain and behavioral development. Hum Brain Mapp 41(17):4789–4803. https://doi.org/10.1002/hbm.25158

    Article  PubMed  PubMed Central  Google Scholar 

  54. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22(3):165–178. https://doi.org/10.1002/hbm.20022

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rajasilta O, Tuulari JJ, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Häkkinen S, Merisaari H, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H (2020) Resting-state networks of the neonate brain identified using independent component analysis. Dev Neurobiol 80(3–4):111–125. https://doi.org/10.1002/dneu.22742

    Article  PubMed  Google Scholar 

  56. Farahani FV, Karwowski W, Lighthall NR (2019) Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci 13:585. https://doi.org/10.3389/fnins.2019.00585

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhao T, Xu Y, He Y (2019) Graph theoretical modeling of baby brain networks. Neuroimage 185:711–727. https://doi.org/10.1016/j.neuroimage.2018.06.038

    Article  PubMed  Google Scholar 

  58. Radhakrishnan R, Vishnubhotla RV, Zhao Y, Yan J, He B, Steinhardt N, Haas DM, Sokol GM, Sadhasivam S (2022) Global Brain Functional Network Connectivity in Infants With Prenatal Opioid Exposure. Front Pediatr 10. https://doi.org/10.3389/fped.2022.847037

  59. Ball G, Aljabar P, Arichi T, Tusor N, Cox D, Merchant N, Nongena P, Hajnal JV, Edwards AD, Counsell SJ (2016) Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 124(Pt A):267–275. https://doi.org/10.1016/j.neuroimage.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  60. Smyser CD, Dosenbach NU, Smyser TA, Snyder AZ, Rogers CE, Inder TE, Schlaggar BL, Neil JJ (2016) Prediction of brain maturity in infants using machine-learning algorithms. Neuroimage 136:1–9. https://doi.org/10.1016/j.neuroimage.2016.05.029

    Article  PubMed  Google Scholar 

Download references

Funding

RR was supported by the American Roentgen Ray Scholarship Award 2018 and Radiological Society of North America Seed Grant 2018. ZG was supported by the Indiana University CTSI. SS, RR, and DH were supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award, R01HD096800 (PI: Sadhasivam). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupa Radhakrishnan.

Ethics declarations

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study or their legal guardians.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, R., Vishnubhotla, R.V., Guckien, Z. et al. Thalamocortical functional connectivity in infants with prenatal opioid exposure correlates with severity of neonatal opioid withdrawal syndrome. Neuroradiology 64, 1649–1659 (2022). https://doi.org/10.1007/s00234-022-02939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-02939-4

Keywords

Navigation