Skip to main content

Advertisement

Log in

Know your tools—concordance of different methods for measuring brain volume change after ischemic stroke

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods.

Methods

Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements.

Results

Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions.

Conclusions

Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Popescu V, Agosta F, Hulst HE et al (2013) Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 84(10):1082–1091

    Article  PubMed  Google Scholar 

  2. Li Q, Pardoe H, Lichter R et al (2014) Cortical thickness estimation in longitudinal stroke studies: a comparison of 3 measurement methods. NeuroImage: Clinical. doi:10.1016/j.nicl.2014.08.017

  3. Dang C, Liu G, Xing S et al (2013) Longitudinal cortical volume changes correlate with motor recovery in patients after acute local subcortical infarction. Stroke 44(10):2795–2801

    Article  PubMed  Google Scholar 

  4. Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363(9406):392–394

    Article  PubMed  Google Scholar 

  5. Seghier ML, Ramsden S, Lim L, Leff AP, Price CJ (2014) Gradual lesion expansion and brain shrinkage years after stroke. Stroke 45(3):877–879

  6. Aoi MC, Hu K, Lo MT, Selim M, Olufsen MS, Novak V (2012) Impaired cerebral autoregulation is associated with brain atrophy and worse functional status in chronic ischemic stroke. PLoS One 7(10):e46794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brodtmann A, Pardoe H, Li Q, Lichter R, Ostergaard L, Cumming T (2012) Changes in regional brain volume three months after stroke. J Neurol Sci 322:122–128

    Article  PubMed  Google Scholar 

  8. Ding G, Jiang Q, Li L et al (2010) Cerebral tissue repair and atrophy after embolic stroke in rat: a magnetic resonance imaging study of erythropoietin therapy. J Neurosci Res 88(14):3206–3214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Shen F, Walker EJ, Jiang L et al (2011) Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 31(12):2343–2351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A (2009) Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 30(4):1310–1327

    Article  PubMed  Google Scholar 

  11. Lansberg MG, O’Brien MW, Tong DC, Moseley ME, Albers GW (2001) Evolution of cerebral infarct volume assessed by diffusion-weighted magnetic resonance imaging. Arch Neurol 58(4):613

    CAS  PubMed  Google Scholar 

  12. Wang X, Valdes Hernandez MC, Doubal F, Chappell FM, Wardlaw JM (2012) How much do focal infarcts distort white matter lesions and global cerebral atrophy measures? Cerebrovasc Dis 34(5–6):336–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kuceyeski A, Kamel H, Navi BB, Raj A, Iadecola C (2014) Predicting future brain tissue loss from white matter connectivity disruption in ischemic stroke. Stroke 45(3):717–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  CAS  PubMed  Google Scholar 

  15. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

    Article  PubMed  Google Scholar 

  16. Wolfson L, Wakefield DB, Moscufo N et al (2013) Rapid buildup of brain white matter hyperintensities over 4 years linked to ambulatory blood pressure, mobility, cognition, and depression in old persons. J Gerontol A: Biol Med Sci 68(11):1387–1394

  17. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219

    Article  PubMed  Google Scholar 

  18. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  PubMed  Google Scholar 

  19. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  CAS  PubMed  Google Scholar 

  20. Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33(9):2062–2071

    Article  PubMed  Google Scholar 

  21. Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196

    Article  PubMed Central  PubMed  Google Scholar 

  22. Segonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3):1060–1075

    Article  CAS  PubMed  Google Scholar 

  23. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  CAS  PubMed  Google Scholar 

  24. Fischl B, Salat DH, van der Kouwe AJ et al (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69–S84

    Article  PubMed  Google Scholar 

  25. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

    Article  CAS  PubMed  Google Scholar 

  26. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20(1):70–80

    Article  CAS  PubMed  Google Scholar 

  27. Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26(4):518–529

    Article  PubMed  Google Scholar 

  28. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  CAS  PubMed  Google Scholar 

  29. Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    Article  CAS  PubMed  Google Scholar 

  30. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  32. Smith RJ (2009) Use and misuse of the reduced major axis for line‐fitting. Am J Phys Anthropol 140(3):476–486

    Article  PubMed  Google Scholar 

  33. Winkler AM, Kochunov P, Blangero J et al (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146

    Article  PubMed Central  PubMed  Google Scholar 

  34. De Stefano N, Airas L, Grigoriadis N et al (2014) Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 28(2):147–156

    Article  PubMed  Google Scholar 

  35. Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489

    Article  PubMed  Google Scholar 

  36. Jasperse B, Valsasina P, Neacsu V et al (2007) Intercenter agreement of brain atrophy measurement in multiple sclerosis patients using manually‐edited SIENA and SIENAX. J Magn Reson Imaging 26(4):881–885

    Article  PubMed  Google Scholar 

  37. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821

    Article  CAS  PubMed  Google Scholar 

  39. Clarkson MJ, Cardoso MJ, Ridgway GR et al (2011) A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage 57(3):856–865

    Article  PubMed  Google Scholar 

Download references

Ethical Standards and Patient Consent

We declare that all human and animal studies have been approved by the Melbourne Health Research Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of Interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawaf Yassi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassi, N., Campbell, B.C.V., Moffat, B.A. et al. Know your tools—concordance of different methods for measuring brain volume change after ischemic stroke. Neuroradiology 57, 685–695 (2015). https://doi.org/10.1007/s00234-015-1522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1522-8

Keywords

Navigation