Skip to main content
Log in

CTA-enhanced perfusion CT: an original method to perform ultra-low-dose CTA-enhanced perfusion CT

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Utilizing CT angiography enhances image quality in PCT, thereby permitting acquisition at ultra-low dose.

Methods

Dynamic CT acquisitions were obtained at 80 kVp with decreasing tube current–time product [milliamperes × seconds (mAs)] in patients suspected of ischemic stroke, with concurrent CTA of the cervical and intracranial arteries. By utilizing fast Fourier transformation, high spatial frequencies of CTA were combined with low spatial frequencies of PCT to create a virtual PCT dataset. The real and virtual PCT datasets with decreasing mAs were compared by assessing contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and noise and PCT values and by visual inspection of PCT parametric maps.

Results

Virtual PCT attained CNR and SNR three- to sevenfold superior to real PCT and noise reduction by a factor of 4–6 (p < 0.05). At 20 mAs, virtual PCT achieved diagnostic parametric maps, while the quality of real PCT maps was inadequate. At 10 mAs, both real and virtual PCT maps were nondiagnostic. Virtual PCT (but not real PCT) maps regained diagnostic quality at 10 mAs by applying 40 % adaptive statistical iterative reconstruction (ASIR) and improved further with 80 % ASIR.

Conclusion

Our new method of creating virtual PCT by combining ultra-low-dose PCT with CTA information yields diagnostic perfusion parametric maps from PCT acquired at 20 or 10 mAs with 80 % ASIR. Effective dose is approximately 0.20 mSv, equivalent to two chest radiographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hopyan J, Ciarallo A, Dowlatshahi D, Howard P, John V, Yeung R, Zhang L, Kim J, MacFarlane G, Lee TY, Aviv RI (2010) Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology 255(1):142–153. doi:10.1148/radiol.09091021

    Article  PubMed  Google Scholar 

  2. Kloska SP, Nabavi DG, Gaus C, Nam EM, Klotz E, Ringelstein EB, Heindel W (2004) Acute stroke assessment with CT: do we need multimodal evaluation? Radiology 233(1):79–86. doi:10.1148/radiol.2331030028

    Article  PubMed  Google Scholar 

  3. Lev MH (2013) Perfusion imaging of acute stroke: its role in current and future clinical practice. Radiology 266(1):22–27. doi:10.1148/radiol.12121355

    Article  PubMed  Google Scholar 

  4. Goh V, Halligan S, Taylor SA, Burling D, Bassett P, Bartram CI (2007) Differentiation between diverticulitis and colorectal cancer: quantitative CT perfusion measurements versus morphologic criteria—initial experience. Radiology 242(2):456–462. doi:10.1148/radiol.2422051670

    Article  PubMed  Google Scholar 

  5. Rumboldt Z, Al-Okaili R, Deveikis JP (2005) Perfusion CT for head and neck tumors: pilot study. AJNR Am J Neuroradiol 26(5):1178–1185

    PubMed  Google Scholar 

  6. Sahani DV, Holalkere NS, Mueller PR, Zhu AX (2007) Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology 243(3):736–743. doi:10.1148/radiol.2433052020

    Article  PubMed  Google Scholar 

  7. Abe H, Murakami T, Kubota M, Kim T, Hori M, Kudo M, Hashimoto K, Nakamori S, Dono K, Tomoda K, Monden M, Nakamura H (2005) Quantitative tissue blood flow evaluation of pancreatic tumor: comparison between xenon CT technique and perfusion CT technique based on deconvolution analysis. Radiat Med 23(5):364–370

    PubMed  Google Scholar 

  8. Choy M, Rafii S (2001) Role of angiogenesis in the progression and treatment of prostate cancer. Cancer Investig 19(2):181–191

    Article  CAS  Google Scholar 

  9. Henderson E, Milosevic MF, Haider MA, Yeung IW (2003) Functional CT imaging of prostate cancer. Phys Med Biol 48(18):3085–3100

    Article  PubMed  Google Scholar 

  10. Britten AJ, Crotty M, Kiremidjian H, Grundy A, Adam EJ (2004) The addition of computer simulated noise to investigate radiation dose and image quality in images with spatial correlation of statistical noise: an example application to X-ray CT of the brain. Br J Radiol 77(916):323–328

    Article  CAS  PubMed  Google Scholar 

  11. European Guidelines on Quality Criteria for Computed Tomography. EUR 16262 EN, 1999. http://www.drs.dk/guidelines/ct/quality/

  12. Mnyusiwalla A, Aviv RI, Symons SP (2009) Radiation dose from multidetector row CT imaging for acute stroke. Neuroradiology 51(10):635–640. doi:10.1007/s00234-009-0543-6

    Article  PubMed  Google Scholar 

  13. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44(3):466–473

    Article  CAS  PubMed  Google Scholar 

  14. Wintermark M, Fischbein NJ, Smith WS, Ko NU, Quist M, Dillon WP (2005) Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 26(1):104–112

    PubMed  Google Scholar 

  15. Scharf J, Brockmann MA, Daffertshofer M, Diepers M, Neumaier-Probst E, Weiss C, Paschke T, Groden C (2006) Improvement of sensitivity and interrater reliability to detect acute stroke by dynamic perfusion computed tomography and computed tomography angiography. J Comput Assist Tomogr 30(1):105–110

    Article  PubMed  Google Scholar 

  16. Kim SJ, Noh HJ, Yoon CW, Kim KH, Jeon P, Bang OY, Kim GM, Chung CS, Lee KH (2012) Multiphasic perfusion computed tomography as a predictor of collateral flow in acute ischemic stroke: comparison with digital subtraction angiography. Eur Neurol 67(4):252–255

    Article  PubMed  Google Scholar 

  17. Swap C LM, McDonald C, Koroshetz W, Rordorf G, Buonanno F, et al (2002) Degree of oligemia by perfusion-weighted CT and risk of hemorrhage after IA thrombolysis. Stroke – Proceedings of the 27th International Conference on Stroke and Cerebral Circulation, San Antonio, TX

  18. Hom J, Dankbaar JW, Soares BP, Schneider T, Cheng SC, Bredno J, Lau BC, Smith W, Dillon WP, Wintermark M (2011) Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 32(1):41–48. doi:10.3174/ajnr.A2244

    CAS  PubMed  Google Scholar 

  19. Kishore S, Ko N, Soares BP, Higashida RT, Tong E, Bhogal S, Bredno J, Cheng SC, Wintermark M (2012) Perfusion-CT assessment of blood-brain barrier permeability in patients with aneurysmal subarachnoid hemorrhage. J Neuroradiol 39(5):317–325. doi:10.1016/j.neurad.2011.11.004

    Article  PubMed  Google Scholar 

  20. Kunze E, Pham M, Raslan F, Stetter C, Lee JY, Solymosi L, Ernestus RI, Vince GH, Westermaier T (2012) Value of perfusion CT, transcranial Doppler sonography, and neurological examination to detect delayed vasospasm after aneurysmal subarachnoid hemorrhage. Radiol Res Pract 2012:231206. doi:10.1155/2012/231206

    PubMed Central  PubMed  Google Scholar 

  21. Eicker SO, Turowski B, Heiroth HJ, Steiger HJ, Hanggi D (2011) A comparative study of perfusion CT and 99 m Tc-HMPAO SPECT measurement to assess cerebrovascular reserve capacity in patients with internal carotid artery occlusion. Eur J Med Res 16(11):484–490

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rim NJ, Kim HS, Shin YS, Kim SY (2008) Which CT perfusion parameter best reflects cerebrovascular reserve?: correlation of acetazolamide-challenged CT perfusion with single-photon emission CT in Moyamoya patients. AJNR Am J Neuroradiol 29(9):1658–1663. doi:10.3174/ajnr.A1229

    Article  PubMed  Google Scholar 

  23. Miles KA (2006) Perfusion imaging with computed tomography: brain and beyond. Eur Radiol 16(Suppl 7):M37–43

    Article  PubMed  Google Scholar 

  24. Hermans R, Meijerink M, Van den Bogaert W, Rijnders A, Weltens C, Lambin P (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57(5):1351–1356

    Article  PubMed  Google Scholar 

  25. Meijerink MR, van Cruijsen H, Hoekman K, Kater M, van Schaik C, van Waesberghe JH, Giaccone G, Manoliu RA (2007) The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients. Eur Radiol 17(7):1700–1713. doi:10.1007/s00330-006-0425-9

    Article  PubMed  Google Scholar 

  26. Jain R, Scarpace L, Ellika S, Schultz LR, Rock JP, Rosenblum ML, Patel SC, Lee TY, Mikkelsen T (2007) First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery 61(4):778–786. doi:10.1227/01.NEU.0000298906.48388.26, discussion 786–777

    Article  PubMed  Google Scholar 

  27. Tsuji Y, Yamamoto H, Yazumi S, Watanabe Y, Matsueda K, Yamamoto H, Chiba T (2007) Perfusion computerized tomography can predict pancreatic necrosis in early stages of severe acute pancreatitis. Clin Gastroenterol Hepatol 5(12):1484–1492. doi:10.1016/j.cgh.2007.07.014

    Article  PubMed  Google Scholar 

Download references

Ethical standards and patient consent

We declare that all human and animal studies have been approved by our Institutional Review Board and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Wintermark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, E., Wintermark, M. CTA-enhanced perfusion CT: an original method to perform ultra-low-dose CTA-enhanced perfusion CT. Neuroradiology 56, 955–964 (2014). https://doi.org/10.1007/s00234-014-1416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1416-1

Keywords

Navigation