Skip to main content
Log in

Integral points in rational polygons: a numerical semigroup approach

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

In this paper we use an elementary approach by using numerical semigroups (specifically, those with two generators) to give a formula for the number of integral points inside a right-angled triangle with rational vertices. This is the basic case for computing the number of integral points inside a rational (not necessarily convex) polygon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout this paper we will call a point \(P \in {\mathbb {R}}^2\) integral if its coordinates lie in \({\mathbb {Z}}^2\), and similarly P will be called rational if \(P \in {\mathbb {Q}}^2\).

References

  1. Pick, G.A.: Geometrisches zur Zahlenlehre. Sitzungsber. Lotos (Prague) 19, 311–319 (1889)

    Google Scholar 

  2. Hardy, G.H., Littlewood, J.E.: Some problems of Diophantine approximation: the lattice-points of a right-angled triangle. Abh. Math. Sem. Univ. Hambg. 1, 211–248 (1922)

    Article  MathSciNet  Google Scholar 

  3. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à \(n\) dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  4. Louis, J.M.: Lattice points in a tetrahedron and generalized Dedekind sums. J. Indian Math. Soc. (N.S.) 15, 41–46 (1951)

    MathSciNet  Google Scholar 

  5. Pommersheim, J.E.: Toric varieties, lattice points and Dedekind sums. Math. Ann. 295, 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Reeve, J.E.: On the volume of the lattice polyhedra. Proc. Lond. Math. Soc. 7, 378–395 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, M., Robins, S.: Computing the continuous discretely. Integer-point enumeration in polyhedra. Springer, New York (2007)

  8. Beck, M., Robins, S.: Explicit and efficient formulas for the lattice point count inside rational polygons using Dedekind-Rademacher sums. Discrete Comput. Geom. 27, 443–459 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barvinok, A.I.: Integer points in polyhedra. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)

  10. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, K.P., Yau, S.T.: Analysis of sharp polynomial upper estimate of number of positive integral points in 4-dimensional tetrahedra. J. Reine Angew. Math. 547, 191–205 (2002)

    MATH  Google Scholar 

  12. Lin, K.P., Yau, S.T.: Analysis of sharp polynomial upper estimate of number of positive integral points in 5-dimensional tetrahedra. J. Number Theory 93, 207–234 (2002)

    Article  MATH  Google Scholar 

  13. Lin, K.P., Yau, S.S.T.: Counting the number of integral points in general \(n\)-dimensional tetrahedra and Bernoulli polynomials. Can. Math. Bull. 24, 229–241 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, X., Yau, S.S.T.: On the GLY conjecture of upper estimate of positive integral points in real right-angled simplices. J. Number Theory 122, 184–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, Y.J., Yau, S.S.T.: A sharp estimate of number of integral points in a tetrahedron. J. Reine Angew. Math. 423, 199–219 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Xu, Y.J., Yau, S.S.T.: Durfee conjecture and coordinate free characterization of homogeneous singularities. J. Differ. Geom. 37, 375–396 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Xu, Y.J., Yau, S.S.T.: A sharp estimate of number of integral points in a 4-dimensional tetrahedra. J. Reine Angew. Math. 473, 1–23 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Yau, S.S.T., Zhang, L.: An upper estimate of integral points in real simplices with an application to singularity theory. Math. Res. Lett. 13, 911–921 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Márquez–Campos, G., Tornero, J.M.: Characterization of gaps and elements of a numerical semigroup using Groebner bases. In: Trends in Number Theory. Contemporary Mathematics, vol. 649, p. 139. American Mathematical Society, Providence, RI (2015)

  20. Ramírez Alfonsín, J.L.: Gaps in semigroups. Discrete Math. 308, 4177–4184 (2008)

  21. García-Sánchez, P.A., Rosales, J.C.: Numerical semigroups. Springer, New York (2009)

    MATH  Google Scholar 

  22. Ramírez Alfonsín, J.L.: The Diophantine Frobenius problem. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  23. Berg, M.D, Kreveld, M.V., Overmars, M., Schwarzkopf, O.: Computational geometry (2nd revised ed.). Springer, New York (2009)

  24. Kirkpatrick, D.G., Klawe, M.M., Tarjan, R.E.: Polygon triangulation in \({\cal O}(n \log \log n)\) time with simple data structures. Discrete Comput. Geom. 7, 329–346 (1992)

  25. Popoviciou, T.: Asupra unei probleme de patitie a numerelor. Acad. Repub. Pop. Romane Filiala Cluj Studii si cercetari stiintifice 4, 7–58 (1953)

    Google Scholar 

  26. Brown, T.C., Chou, W.S., Shiue, P.J.: On the partition function of a finite set. Australas. J. Comb. 27, 193–204 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors warmly acknowledge the help and advice of J. C. Rosales.

The final stage of this work was completed during a stay of the first author in the Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, during the spring term of 2013, thanks to the Grant P08–FQM–3894 (Junta de Andalucía).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Márquez-Campos.

Additional information

Communicated by Fernando Torres.

Guadalupe Márquez-Campos and José M. Tornero were partially supported by the Grant FQM–218 and P12–FQM–2696 (FEDER and FSE). The Jorge L. Ramírez-Alfonsín was supported by ANR TEOMATRO Grant ANR-10-BLAN 0207 and Grant ECOS-Nord M13M01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez-Campos, G., Ramírez-Alfonsín, J.L. & Tornero, J.M. Integral points in rational polygons: a numerical semigroup approach. Semigroup Forum 94, 123–138 (2017). https://doi.org/10.1007/s00233-016-9820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-016-9820-y

Keywords

Navigation