Skip to main content

Advertisement

Log in

Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal A, Zudans I, Weber EA, Olofsson J, Orwar O, Weber SG (2007) Effect of cell size and shape on single-cell electroporation. Anal Chem 79:3589–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Mayah AHJ, Irons SL, Pink RC, Carter DRF, Kadhim MA (2012) Possible role of exosomes containing RNA in mediating nontargeted effect of ionizing radiation. Radiat Res 177:539–545

    Article  CAS  PubMed  Google Scholar 

  • Azzam EI, de Toledo SM, Gooding T, Little JB (1998) Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res 150:497–504

    Article  CAS  PubMed  Google Scholar 

  • Baskar R (2010) Emerging role of radiation induced bystander effects: cell communications and carcinogenesis. Genome Integr 1:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Dov N, Rozman Grinberg I, Korenstein R (2012) Electroendocytosis is driven by the binding of electrochemically produced protons to the cell’s surface. PLoS One 7:e50299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobrie A, Colombo M, Raposo G, Théry C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 1:18397

    Article  CAS  Google Scholar 

  • Calvet CY, Famin D, Andre FM, Mir LM (2014) Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology 3:e28131

    Article  PubMed  PubMed Central  Google Scholar 

  • Cemazar M, Jarm T, Miklavcic D, Lebar AM, Ihan A, Kopitar NA, Sersa G (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro Magnetobiol 17:263–272

    Article  Google Scholar 

  • Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Bi 30:255–289

    Article  CAS  Google Scholar 

  • Davalos R, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231

    Article  CAS  PubMed  Google Scholar 

  • Davis DM (2007) Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 7:238–243

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Liang H, Fu S, Weichselbaum RR, Fu Y (2016) From DNA damage to nucleic acid sensing: a strategy to enhance radiation therapy. Clin Cancer Res 22:20–25

    Article  CAS  PubMed  Google Scholar 

  • Edd JF, Horowitz L, Davalos RF, Mir LM, Rubinsky B (2006) In-vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53:1409–1415

    Article  PubMed  Google Scholar 

  • El-Andaloussi S, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • Forde PF, Sadadcharam M, Hall LJ, O’Donovan TR, de Kruijf M, Byrne WL, O’Sullivan GC, Soden DM (2014) Enhancement of electroporation facilitated immunogene therapy via T-reg depletion. Cancer Gene Ther 21:349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  PubMed  Google Scholar 

  • Gorman S, Tosetto M, Lyng F, Howe O, Sheahan K, O’Donoghue D, Hyland J, Mulcahy H, O’Sullivan J (2009) Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction. Mutat Res 669:131–138

    Article  CAS  PubMed  Google Scholar 

  • Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia, pp 35–36

    Google Scholar 

  • Hatzi VI, Laskaratou DA, Mavragani IV, Nikitaki Z, Mangelis A, Panayiotidis MI, Pantelias GE, Terzoudi GI, Georgakilas AG (2015) Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett 356:34–42

    Article  CAS  PubMed  Google Scholar 

  • Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR (2008) Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 60:943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller R, Gilbert R, Jaroszeski MJ (1997) Electrochemotherapy: an emerging drug delivery method for the treatment of cancer. Adv Drug Deliv Rev 26:185–197

    Article  PubMed  Google Scholar 

  • Heller L, Todorovic V, Cemazar M (2013) Electrotransfer of single-stranded or double-stranded DNA induces complete regression of palpable B16.F10 mouse melanomas. Cancer Gene Ther 20:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Ohashi E, Kadosawa T, Hong SH, Matsunaga S, Mochizuki M, Nishimura R, Sasaki N (2004) Establishment and characterization of four canine melanoma cell lines. J Vet Med Sci 66:1437–1440

    Article  PubMed  Google Scholar 

  • Klammer H, Mladenov E, Li F, Iliakis G (2015) Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 356:58–71

    Article  CAS  PubMed  Google Scholar 

  • Kos B, Voigt P, Miklavcic D, Moche M (2015) Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiol Oncol 49:234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Jella K, Rani S, O’Driscoll L, McClean B, Byrne HJ, Lyng FM (2014) Exosomes are involved in mediating radiation induced bystander signalling in human keratinocyte cells. Radiat Res 181:138–145

    Article  PubMed  Google Scholar 

  • Lampreht U, Kamensek U, Stimac M, Sersa G, Tozon N, Bosnjak M, Brozic A, de Sá Oliveira GG, Nakagawa T, Saeki K, Cemazar M (2015) Gene electrotransfer of canine interleukin 12 into canine melanoma cell lines. J Membr Biol 248:909–917

    Article  CAS  PubMed  Google Scholar 

  • Marín A, Martín M, Liñán O, Alvarenga F, López M, Fernández L, Büchser D, Cerezo L (2015) Bystander effects and radiotherapy. Rep Pract Oncol Radiother 20:12–21

    Article  PubMed  Google Scholar 

  • Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4:699–706

    Article  PubMed  Google Scholar 

  • Mir LM, Belehdradek M, Domenge C, Orlowski S, Poddevin J, Schwab G, Luboinnski B, Paoletti C (1991) Electrochemotherapy, a new antitumor treatment: first clinical trial. C R Acad Sci III Sci Vie 313:613–618

    CAS  Google Scholar 

  • Mothersill C, Seymour C (1997) Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol 71:421–427

    Article  CAS  PubMed  Google Scholar 

  • Mothersill C, Seymour C (1998) Cell–cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res 149:256–262

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Res 52:6394–6396

    CAS  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electrical fields. EMBO J 1:841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogorevc E, Kralj-Iglic V, Veranic P (2013) The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol 47:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlowski S, Behradek J Jr, Paoletti C, Mir LM (1988) Transient electropermeabilization of cells in culture. Increase in the cytotoxicity of anticancer drugs. Biochem Pharmacol 37:4724–4733

    Article  Google Scholar 

  • Potter H, Heller R (2003) Transfection by electroporarion. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb0903s62

    PubMed  PubMed Central  Google Scholar 

  • Rols MP (2006) Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim Biophys Acta 1758:423–428

    Article  CAS  PubMed  Google Scholar 

  • Sersa G, Miklavcic D, Cemazar M, Belehradek J Jr, Jarm T, Mir LM (1997) Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompetent and immunodeficient mice. Bioelectrochem Bioenerg 43:279–283

    Article  CAS  Google Scholar 

  • Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshall G, Miklavcic D (2015) Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 64:1315–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC (2014) Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membr Biol 247:1209–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6:789–798

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Asaad N, Held KD (2005) Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene 24:2096–2103

    Article  CAS  PubMed  Google Scholar 

  • Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Slovenian Research Agency (Program No. P3-0003, Project Nos. J3-4211, J3-6793, J3-4259, J3-6796) and conducted within the scope of LEA EBAM (French-Slovenian European Associated Laboratory: Pulsed Electric Fields Applications in Biology and Medicine) and COST Action. We would also like to thank Mira Lavric (Institute of Oncology Ljubljana, Ljubljana, Slovenia) for her help with the cell culturing, Ilija Vojvodic and Alenka Vavtar (Institute of Oncology Ljubljana, Ljubljana, Slovenia) for their help with the irradiation of the cells and Andreja Brozic and Simon Bucek (Institute of Oncology Ljubljana, Ljubljana, Slovenia) for their help with flow cytometric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Sersa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prevc, A., Bedina Zavec, A., Cemazar, M. et al. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type. J Membrane Biol 249, 703–711 (2016). https://doi.org/10.1007/s00232-016-9915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9915-0

Keywords

Navigation