Skip to main content
Log in

AFM of the Ultrastructural and Mechanical Properties of Lipid-Raft-Disrupted and/or Cold-Treated Endothelial Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ando K, Obara Y, Sugama J, Kotani A, Koike N, Ohkubo S, Nakahata N (2010) P2Y2 receptor-Gq/11 signaling at lipid rafts is required for UTP-induced cell migration in NG 108-15 cells. J Pharmacol Exp Ther 334:809–819

    Article  CAS  PubMed  Google Scholar 

  • Bhadriraju K, Hansen LK (2002) Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp Cell Res 278:92–100

    Article  CAS  PubMed  Google Scholar 

  • Bode AP, Knupp CL (1994) Effect of cold storage on platelet glycoprotein Ib and vesiculation. Transfusion 34:690–696

    Article  CAS  PubMed  Google Scholar 

  • Byfield FJ, Aranda-Espinoza H, Romanenko VG, Rothblat GH, Levitan I (2004) Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophys J 87:3336–3343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Shao L, Ali Z, Cai J, Chen ZW (2008) NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vgamma2Vdelta2 T-cell expansion. Blood 111:4220–4232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Qin J, Cai J, Chen ZW (2009) Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. PLoS One 4:e5386

    Article  PubMed Central  PubMed  Google Scholar 

  • Fang L, Choi SH, Baek JS, Liu C, Almazan F, Ulrich F, Wiesner P, Taleb A, Deer E, Pattison J et al (2013) Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 498:118–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Fullekrug J, Simons K (2004) Lipid rafts and apical membrane traffic. Ann N Y Acad Sci 1014:164–169

    Article  PubMed  Google Scholar 

  • Gomez-Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez-Baranda S, Illa I, Bernad A, Manes S, Martinez AC (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci USA 98:9642–9647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Shao W, Wu L, Yang W, Chen Y (2012) Effects of exogenous ganglioside GM1 on different stages of cell spreading studied by directly quantifying spreading rate. Cell Commun Adhes 19:85–95

    Article  CAS  PubMed  Google Scholar 

  • Huttner WB, Zimmerberg J (2001) Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13:478–484

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Pi J, Huang X, Huang F, Shao W, Li S, Chen Y, Cai J (2012) BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol 93:1715–1723

    Article  CAS  PubMed  Google Scholar 

  • Juliano RL, Gagalang E (1977) The adhesion of Chinese hamster cells. I. Effects of temperature, metabolic inhibitors and proteolytic dissection of cell surface macromolecules. J Cell Physiol 92:209–220

    Article  CAS  PubMed  Google Scholar 

  • Kenworthy AK (2008) Have we become overly reliant on lipid rafts? Talking point on the involvement of lipid rafts in T-cell activation. EMBO Rep 9:531–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiely JM, Hu Y, Garcia-Cardena G, Gimbrone MA Jr (2003) Lipid raft localization of cell surface E-selectin is required for ligation-induced activation of phospholipase C gamma. J Immunol 171:3216–3224

    Article  CAS  PubMed  Google Scholar 

  • Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185:381–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langner M, Kubica K (1999) The electrostatics of lipid surfaces. Chem Phys Lipids 101:3–35

    Article  CAS  PubMed  Google Scholar 

  • Liao H, He H, Chen Y, Zeng F, Huang J, Wu L, Chen Y (2014) Effects of long-term serial cell passaging on cell spreading, migration, and cell-surface ultrastructures of cultured vascular endothelial cells. Cytotechnology. doi:10.1007/s10616-013-9560-8

  • Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103:18992–18997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Magee AI, Adler J, Parmryd I (2005) Cold-induced coalescence of T-cell plasma membrane microdomains activates signalling pathways. J Cell Sci 118:3141–3151

    Article  CAS  PubMed  Google Scholar 

  • Mammoto A, Huang S, Moore K, Oh P, Ingber DE (2004) Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 279:26323–26330

    Article  CAS  PubMed  Google Scholar 

  • Manes S, Mira E, Gomez-Mouton C, Lacalle RA, Keller P, Labrador JP, Martinez AC (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J 18:6211–6220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michel V, Bakovic M (2007) Lipid rafts in health and disease. Biol Cell 99:129–140

    Article  CAS  PubMed  Google Scholar 

  • Mounier J, Laurent V, Hall A, Fort P, Carlier MF, Sansonetti PJ, Egile C (1999) Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J Cell Sci 112(Pt 13):2069–2080

    CAS  PubMed  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  CAS  PubMed  Google Scholar 

  • Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M, Sato C (2011) Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem 286:1999–2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noghero A, Perino A, Seano G, Saglio E, Lo Sasso G, Veglio F, Primo L, Hirsch E, Bussolino F, Morello F (2012) Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2. Arterioscler Thromb Vasc Biol 32:2280–2288

    Article  CAS  PubMed  Google Scholar 

  • Norman LL, Oetama RJ, Dembo M, Byfield F, Hammer DA, Levitan I, Aranda-Espinoza H (2010) Modification of cellular cholesterol content affects traction force, adhesion and cell spreading. Cell Mol Bioeng 3:151–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierobon P, Cappello G (2012) Quantum dots to tail single bio-molecules inside living cells. Adv Drug Deliv Rev 64:167–178

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rico F, Chu C, Abdulreda MH, Qin Y, Moy VT (2010) Temperature modulation of integrin-mediated cell adhesion. Biophys J 99:1387–1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roca-Cusachs P, Alcaraz J, Sunyer R, Samitier J, Farre R, Navajas D (2008) Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 94:4984–4995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubinsky B (2003) Principles of low temperature cell preservation. Heart Fail Rev 8:277–284

    Article  CAS  PubMed  Google Scholar 

  • Sagvolden G, Giaever I, Pettersen EO, Feder J (1999) Cell adhesion force microscopy. Proc Natl Acad Sci USA 96:471–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shao W, Jin H, Huang J, Qiu B, Xia R, Deng Z, Cai J, Chen Y (2013) AFM investigation on Ox-LDL-induced changes in cell spreading and cell-surface adhesion property of endothelial cells. Scanning 35:119–126

    Article  CAS  PubMed  Google Scholar 

  • Shaw AS (2006) Lipid rafts: now you see them, now you don’t. Nat Immunol 7:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Staykova M, Holmes DP, Read C, Stone HA (2011) Mechanics of surface area regulation in cells examined with confined lipid membranes. Proc Natl Acad Sci USA 108:9084–9088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G (2007) The effect of cellular cholesterol on membrane–cytoskeleton adhesion. J Cell Sci 120:2223–2231

    Article  CAS  PubMed  Google Scholar 

  • Wakatsuki T, Wysolmerski RB, Elson EL (2003) Mechanics of cell spreading: role of myosin II. J Cell Sci 116:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66:2181–2189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, He D, Cai J, Chen T, Zou F, Li Y, Wu Y, Chen ZW, Chen Y (2009a) WGA-QD probe-based AFM detects WGA-binding sites on cell surface and WGA-induced rigidity alternation. Biochem Biophys Res Commun 379:335–340

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen Y, Cai J, Zhong L (2009b) QD as a bifunctional cell-surface marker for both fluorescence and atomic force microscopy. Ultramicroscopy 109:268–274

    Article  CAS  PubMed  Google Scholar 

  • Winokur R, Hartwig JH (1995) Mechanism of shape change in chilled human platelets. Blood 85:1796–1804

    CAS  PubMed  Google Scholar 

  • Zeng F, Yang W, Huang J, Chen Y (2013) Determination of the lowest concentrations of aldehyde fixatives for completely fixing various cellular structures by real-time imaging and quantification. Histochem Cell Biol 139:735–749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31260205 & 30900340), the Scientific Research Fund of Jiangxi Provincial Education Department (GJJ10305), and the Scientific Research Foundation for Returned Overseas Chinese Scholar of State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Huang, J., Yu, X. et al. AFM of the Ultrastructural and Mechanical Properties of Lipid-Raft-Disrupted and/or Cold-Treated Endothelial Cells. J Membrane Biol 247, 189–200 (2014). https://doi.org/10.1007/s00232-013-9624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9624-x

Keywords

Navigation