Skip to main content
Log in

Nanosecond Electric Pulses Affect a Plant-Specific Kinesin at the Plasma Membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Electric pulses with high field strength and durations in the nanosecond range (nsPEFs) are of considerable interest for biotechnological and medical applications. However, their actual cellular site of action is still under debate—due to their extremely short rise times, nsPEFs are thought to act mainly in the cell interior rather than at the plasma membrane. On the other hand, nsPEFs can induce membrane permeability. We have revisited this issue using plant cells as a model. By mapping the cellular responses to nsPEFs of different field strength and duration in the tobacco BY-2 cell line, we could define a treatment that does not impinge on short-term viability, such that the physiological responses to the treatment can be followed. We observe, for these conditions, a mild disintegration of the cytoskeleton, impaired membrane localization of the PIN1 auxin-efflux transporter and a delayed premitotic nuclear positioning followed by a transient mitotic arrest. To address the target site of nsPEFs, we made use of the plant-specific KCH kinesin, which can assume two different states with different localization (either near the nucleus or at the cell membrane) driving different cellular functions. We show that nsPEFs reduce cell expansion in nontransformed cells but promote expansion in a line overexpressing KCH. Since cell elongation and cell widening are linked to the KCH localized at the cell membrane, the inverted response in the KCH overexpressor provides evidence for a direct action of nsPEFs, also at the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

nsPEFs:

Nanosecond pulsed electric fields

KCH:

Kinesin with calponin homology

PI:

Pulsing index

References

  • Alkhafaji SR, Fraid M (2007) An investigation on pulsed electric fields technology using new treatment chamber design. Innov Food Sci Emerg Technol 8(2):205–212

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Somers K, Stark RH, Schoenbach KH (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plant Sci 30(1):286–292

    Article  CAS  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495

    CAS  PubMed  Google Scholar 

  • Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer 2:3694–3700

    Article  Google Scholar 

  • Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner L, Frey W, Nick P (2009) Nanosecond electric pulses trigger actin responses in plant cells. Biochem Res Commun 387:590–595

    Article  Google Scholar 

  • Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 134:13938–13941

    Article  CAS  PubMed  Google Scholar 

  • Brodelius PE, Funk C, Shillito RD (2005) Triggered Marx generators for the industrial-scale electroporation of sugar beets. IEEE Trans Ind Appl 3:186–188

    Google Scholar 

  • Buescher ES, Schoenbach KH (2003) Effects of submicrosecond, high intensity pulsed electric fields on living cells—intracellular electromanipulation. IEEE Trans Dielectr Electr Insul 10:5788–5794

    Article  Google Scholar 

  • Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133(3):1251–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    Article  CAS  PubMed  Google Scholar 

  • Eing C, Bonnet S, Pacher M, Puchta H, Frey W (2009) Effects of 1 nanosecond pulsed electric fields exposure on Arabidopsis thaliana. IEEE Trans Dielectr Electr Insul 16:1322–1328

    Article  Google Scholar 

  • Flickinger B, Berghöfer T, Hohenberger P, Eing C, Frey W (2010) Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6. Protoplasma 247:3–12

    Article  PubMed  Google Scholar 

  • Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ (2010) Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys 497:82–89

    Article  CAS  PubMed  Google Scholar 

  • Frey N, Klotz J, Nick P (2009) Dynamic bridges—a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol 50(8):1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Frey N, Klotz J, Nick P (2010) A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J Exp Bot 61:3423–3437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaff DF, Okong’O-Ogola (1971) The use of non-permeating pigments for testing the survival of cells. J Exp Bot 22:756–758

    Article  Google Scholar 

  • Gimona M, Djinovic-Carugo K, Kranewitter WJ, Winder SJ (2002) Functional plasticity of CH domains. FEBS Lett 513:98–106

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski ZV, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 310:1266–1276

    Article  Google Scholar 

  • Hohenberger P, Eing C, Straessner R, Durst S, Frey W, Nick P (2011) Plant actin controls membrane permeability. Biochim Biophys Acta 1808:2304–2312

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Joshi PR, Schoenbach KH (2005) Simultation of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulses. Phys Rev E 72:031902

    Article  CAS  Google Scholar 

  • Ibey BL, Roth CC, Pakhomov AG, Bernhard JA, Wilmink GJ, Pakhomova ON (2011) Dose-dependent thresholds of 10-ns electric pulse induced plasma membrane disruption and cytotoxicity in multiple cell lines. PLoS ONE 6(1):e15642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jovanovic AM, Durst S, Nick P (2010) Plant cell division is specifically affected by nitrotyrosine. J Exp Bot 61:901–909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klotz J, Nick P (2012) A novel actin–microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol 193:576–589

    Article  CAS  PubMed  Google Scholar 

  • Korenbaum E, Rivero R (2002) Calponin homology domains at a glance. J Cell Sci 115:3543–3545

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maisch J, Nick P (2007) Actin is involved in auxin-dependent patterning. Plant Physiol 143:1695–1704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nakamura M, Naoi K, Shoji T, Hashimoto T (2004) Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol 45:1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG (2011) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta 1808:792–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nick P (2010) Probing the actin–auxin oscillator. Plant Signal Behav 5(2):94–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nick P, Han MJ, An G (2009) Auxin stimulates its own transport by shaping actin filaments. Plant Physiol 151:155–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson JR, Beebe SW, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nuccitelli R, Chen X, Pakhomov AG, Baldwin HW, Sheikh S, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125(2):438–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pickard BG (2008) “Second extrinsic organizational mechanism” for orienting cellulose: modelling a role for the plasmalemmal reticulum. Protoplasma 233:1–29

    Article  Google Scholar 

  • Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:945–3955

    Article  Google Scholar 

  • Qin BL, Pothakamury UR, Barbosa-Canovas GV, Swanson BG (1996) Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Crit Rev Food Sci Nutr 36:603–627

    Article  CAS  PubMed  Google Scholar 

  • Rosemberg Y, Korenstein R (1997) Incorporation of macromolecules into cells and vesicles by low electric field: induction of endocytotic-like processes. Bioelectrochem Bioenerg 42:275–281

    Article  CAS  Google Scholar 

  • Růžička K, Šimášková S, Duclercq J, Petrášek J, Zažímalová E, Simon S, Friml J, Van Montagu J, Benková E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA 106:4284–4289

    Article  PubMed Central  PubMed  Google Scholar 

  • Sainsbury F, Collings DA, Mackun J, Gardiner J, Harper JDI, Marc J (2008) Developmental orientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment. Plant J 56:116–131

    Article  CAS  PubMed  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hazewasa S (2005) Appearance of actin microfilament “twin peaks” in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP–fimbrin. Plant J 44:595–605

    Article  CAS  PubMed  Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ED (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  CAS  PubMed  Google Scholar 

  • Schoenbach KH, Joshi RP, Chen C, Kolb JF, Chen N, Stacye M, Blackmore P, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137

    Google Scholar 

  • Schoenbach KH, Joshi RP, Beebe SJ, Baum CE (2009) A scaling law for membrane permeabilization with nanopulses. IEEE Trans Dielectr Electr Insul 16:1224–1235

    Google Scholar 

  • Staempfli R (1958) Reversible breakdown of the excitable membrane of a Ranvier node. Ann Acad Brasil Ciens 30:57–59

    Google Scholar 

  • Takaki K, Yamazaki N, Mukaigawa S, Fujiwara T, Kofujita H, Takahasi K, Narimatsu M, Nagane K (2007) Improvement of edible mushroom yield by electric stimulations. J Plasma Fusion Res 8:556–559

    Google Scholar 

  • Tang L, Yao C, Sun C (2009) Apoptosis induction with electric pulses—a new approach to cancer therapy with drug free. Biochem Biophys Res Commun 390:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89(1):274–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Electroporation. In: Polk C, Postow H (eds) Handbook of biological effects of electromagnetic fields, vol 2. CRC Press, Boca Raton, pp 247–274

    Google Scholar 

  • Yao C, Mi Y, Hu X, Li C, Sun C, Tang J, Wu X (2008) Experiment and mechanism research of SKOV3 cancer cell apoptosis induced by nanosecond pulsed electric field. Conf Proc IEEE Eng Med Biol Sci 2008:1044–1047

    Google Scholar 

Download references

Acknowledgments

This work was supported by a fellowship of the Chinese Scholarship Council to Q. L. Rüdiger Wüstner (Karlsruhe Institute of Technology) is acknowledged for excellent technical assistance during nsPEF treatment and Sabine Purper (Karlsruhe Insitut of Technology), for competent cultivation of high-quality cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kühn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, S., Liu, Q., Eing, C. et al. Nanosecond Electric Pulses Affect a Plant-Specific Kinesin at the Plasma Membrane. J Membrane Biol 246, 927–938 (2013). https://doi.org/10.1007/s00232-013-9594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9594-z

Keywords

Navigation