Skip to main content

Advertisement

Log in

In Vitro Targeted Gene Electrotransfer to Endothelial Cells with Plasmid DNA Containing Human Endothelin-1 Promoter

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Development of recombinant DNA technologies has allowed us to create new delivery systems that target specific cell types and that can be used in gene therapy. One of these targets is vascular endothelium because of its important role in tumor angiogenesis. For tumor endothelium-specific targeting, we prepared plasmid DNA encoding green fluorescent protein under the control of human endothelin-1 promoter (pENDO-EGFP), which is specific for endothelial cells. First we determined gene electrotransfer parameters for improved transfection of endothelial cells evaluating different osmolarity of electroporation buffer, voltages of applied electric pulses, and addition of fetal bovine serum immediately after electroporation to the cells for improved transfection and survival. Transfection efficacy of pENDO-EGFP in different endothelial and nonendothelial cell lines was determined next. Gene electrotransfer efficacy was evaluated using three different methods: fluorescence microscopy, fluorescence microplate reader, and flow cytometry. Our results showed that transfection efficacy was higher when cells were prepared in hypoosmolar compared to isoosmolar electroporation buffer. Furthermore, immediate addition of fetal bovine serum to the cells after pulsing also improved gene electrotransfer into target cells. We proved expression of EGFP under the control of human endothelin-1 promoter in endothelial cells, which was also significantly higher compared to nonendothelial cells. Taken together, we successfully constructed pENDO-EGFP, which was specifically expressed in endothelial cells using improved gene electrotransfer parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bagnato A, Salani D, Di Castro V, Wu-Wong JR, Tecce R, Nicotra MR, Venuti A, Natali PG (1999) Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res 59:720–727

    CAS  PubMed  Google Scholar 

  • Cemazar M, Sersa G, Wilson J, Tozer GM, Hart SL, Grosel A, Dachs GU (2002) Effective gene transfer to solid tumors using different nonviral gene delivery techniques: electroporation, liposomes, and integrin-targeted vector. Cancer Gene Ther 9:399–406

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Golzio M, Sersa G, Rols MP, Teissié J (2006) Electrically-assisted nucleic acids delivery to tissues in vivo: where do we stand? Curr Pharm Des 12:3817–3825

    Article  CAS  PubMed  Google Scholar 

  • Cotrim AP, Baum BJ (2008) Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol 36:97–103

    Article  CAS  PubMed  Google Scholar 

  • Delteil C, Teissie J, Rols MP (2000) Effect of serum on in vitro electrically mediated gene delivery and expression in mammalian cells. Biochim Biophys Acta 1467:362–368

    Article  CAS  PubMed  Google Scholar 

  • Faurie C, Rebersek M, Golzio M, Kanduser M, Escoffre JM, Pavlin M, Teissie J, Miklavcic D, Rols MP (2010) Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 12:117–125

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grant K, Loizidou M, Taylor I (2003) Endothelin-1: a multifunctional molecule in cancer. Br J Cancer 88:163–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haberl S, Miklavcic D, Pavlin M (2010) Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization. Bioelectrochemistry 79:265–271

    Article  CAS  PubMed  Google Scholar 

  • Harats D, Kurihara H, Belloni P, Oakley H, Ziober A, Ackley D, Cain G, Kurihara Y, Lawn R, Sigal E (1995) Targeting gene expression to the vascular wall in transgenic mice using the murine preproendothelin-1 promoter. J Clin Invest 95:1335–1344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jager U, Zhao Y, Porter CD (1999) Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol 73:9702–9709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kähler J, Ewert A, Weckmüller J, Stobbe S, Mittmann C, Köster R, Paul M, Meinertz T, Münzel T (2001) Oxidative stress increases endothelin-1 synthesis in human coronary artery smooth muscle cells. J Cardiovasc Pharmacol 38:49–57

    Article  PubMed  Google Scholar 

  • Kamensek U, Sersa G (2008) Targeted gene therapy in radiotherapy. Radiol Oncol 42:115–135

    Article  CAS  Google Scholar 

  • Kamensek U, Sersa G, Vidic S, Tevz G, Kranjc S, Cemazar M (2011) Irradiation, cisplatin, and 5-azacytidine upregulate cytomegalovirus promoter in tumors and muscles: implementation of non-invasive fluorescence imaging. Mol Imaging Biol 13:43–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses: an in vitro study. Bioelectrochemistry 74:265–271

    Article  CAS  PubMed  Google Scholar 

  • Lee ME, Bloch KD, Clifford JA, Quertermous T (1990) Functional-analysis of the endothelin-1 gene promoter. Evidence for an endothelial cell-specific cis-acting sequence. J Biol Chem 265:10446–10450

    CAS  PubMed  Google Scholar 

  • Mesojednik S, Kamensek U, Cemazar M (2008) Evaluation of shRNA-mediated gene silencing by electroporation in LPB fibrosarcoma cells. Radiol Oncol 42:82–92

    Article  CAS  Google Scholar 

  • Mir LM (2009) Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol Biotechnol 43:167–176

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Watanabe S, Ohtsuka M, Maehara T, Ishihara M, Yokomine T, Sato M (2008) Cre-loxP system as a versatile tool for conferring increased levels of tissue-specific gene expression from a weak promoter. Mol Reprod Dev 75:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652

    Article  CAS  PubMed  Google Scholar 

  • Papadakis ED, Nicklin SA, Baker AH, White SJ (2004) Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 4:89–113

    Article  CAS  PubMed  Google Scholar 

  • Pavlin M, Haberl SA, Rebersek M, Miklavcic D, Kanduser M (2011) Changing the direction and orientation of electric field during electric pulses application improves plasmid gene transfer in vitro. J Vis Exp 55:e3309. doi:10.3791/3309

  • Peister A, Mellad JA, Wang M, Tucker HA, Prockop DJ (2004) Stable transfection of MSCs by electroporation. Gene Ther 11:224–228

    Article  CAS  PubMed  Google Scholar 

  • Prösch S, Stein J, Staak K, Liebenthal C, Volk HD, Krüger DH (1996) Inactivation of the very strong HCMV immediate early promoter by DNA CpG methylation in vitro. Biol Chem Hoppe Seyler 377:195–201

    Article  PubMed  Google Scholar 

  • Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5:e10611

    Article  PubMed Central  PubMed  Google Scholar 

  • Rebersek M, Kanduser M, Miklavcic D (2011) Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells. Radiol Oncol 45:204–208

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rols MP, Teissie J (1989) Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. Eur J Biochem 179:109–115

    Article  CAS  PubMed  Google Scholar 

  • Roth JA, Cristiano RJ (1997) Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 89:21–39

    Article  CAS  PubMed  Google Scholar 

  • Stow LR, Jacobs ME, Wingo CS, Cain BD (2011) Endothelin-1 gene regulation. FASEB J 25:16–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tandle A, Blazer DG 3rd, Libutti SK (2004) Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  • Usaj M, Kanduser M (2012) The systematic study of the electroporation and electrofusion of B16–F1 and CHO cells in isotonic and hypotonic buffer. J Membr Biol 245:583–590

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen EB, van der Veen AY, Hoekstra D, Engberts JB, Halie MR, van der Meer J, Ruiters MH (1999) Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles. Eur J Vasc Endovasc Surg 17:9–14

    Article  PubMed  Google Scholar 

  • Vlachostergios PJ, Karasavvidou F, Kakkas G, Moutzouris G, Patrikidou A, Voutsadakis IA, Daliani DD, Zintzaras E, Melekos MD, Papandreou CN (2012) Expression of neutral endopeptidase, endothelin-1, and nuclear factor kappa B in prostate cancer: interrelations and associations with prostate-specific antigen recurrence after radical prostatectomy. Prostate Cancer 2012:452795

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolff JA, Budker V (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54:3–20

    CAS  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Yamashita J, Ogawa M, Inada K, Yamashita S, Matsuo S, Takano S (1991) A large amount of endothelin-1 is present in human breast-cancer tissues. Res Commun Chem Pathol 74:363–369

    CAS  Google Scholar 

  • Young JL, Zimmer WE, Dean DA (2008) Smooth muscle-specific gene delivery in the vasculature based on restriction of DNA nuclear import. Exp Biol Med (Maywood) 233:840–848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Slovenian Research Agency (program P3-0003, projects J3-4259 and J3-4211) and conducted within the scope of the EBAM European Associated Laboratory (LEA) and COST Action TD1104. The authors thank Dr. Julija Hmeljak, Masa Bosnjak, Miroslava Lavric, Lara Prosen, Dr. Jaka Cemazar, Dr. Marusa Lokar, and Dr. Jaka Lavrencak for their help with preparing cell lines for experiments and flow cytometry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Cemazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesic, N., Cemazar, M. In Vitro Targeted Gene Electrotransfer to Endothelial Cells with Plasmid DNA Containing Human Endothelin-1 Promoter. J Membrane Biol 246, 783–791 (2013). https://doi.org/10.1007/s00232-013-9548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9548-5

Keywords

Navigation