Skip to main content
Log in

Hypoxic Modulation of Ca2+ Signaling in Human Venous and Arterial Endothelial Cells

  • Short Communication
  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca2+ homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O2, 24 h). Basal [Ca2+] i and store depletion-mediated Ca2+ entry were significantly different between the two cell types, yet agonist (ATP)–mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca2+ entry only in venous cells. Clearly, Ca2+ signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abdallah Y, Gligorievski D, Kasseckert SA, Dieterich L, Schafer M, Kuhlmann CR, Noll T, Sauer H, Piper HM, Schafer C (2007) The role of poly(ADP-ribose) polymerase (PARP) in the autonomous proliferative response of endothelial cells to hypoxia. Cardiovasc Res 73:568–574

    Article  PubMed  CAS  Google Scholar 

  • Arnould T, Michiels C, Alexandre I, Remacle J (1992) Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. J Cell Physiol 152:215–221

    Article  PubMed  CAS  Google Scholar 

  • Aromolaran AA, Blatter LA (2005) Modulation of intracellular Ca2+ release and capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells. Am J Physiol 289:C1426–C1436

    Article  CAS  Google Scholar 

  • Bishara NB, Murphy TV, Hill MA (2002) Capacitative Ca2+ entry in vascular endothelial cells is mediated via pathways sensitive to 2 aminoethoxydiphenyl borate and xestospongin C. Br J Pharmacol 135:119–128

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Belus A, Hyvelin J-M, Roux E, Marthan R, Savineau J-P (2001) Effect of chronic hypoxia on agonist-induced tone and calcium signaling in rat pulmonary artery. Am J Physiol 281:L193–L201

    CAS  Google Scholar 

  • Budd JS, Allen KE, Bell PR (1991) Effects of two methods of endothelial cell seeding on cell retention during blood flow. Br J Surg 78:878–882

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    PubMed  CAS  Google Scholar 

  • Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539:77–91

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (1992) Fluorescence-monitoring cell chemistry in vivo. In: Stamford JA (ed) Monitoring neuronal activity. Oxford University Press, Oxford, pp 231–260

    Google Scholar 

  • Fiorio PA, Munaron L (2001) Calcium influx, arachidonic acid, and control of endothelial cell proliferation. Cell Calcium 30:235–244

    Article  Google Scholar 

  • Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105–113

    Article  PubMed  CAS  Google Scholar 

  • Harrison DG, Cai H (2003) Endothelial control of vasomotion and nitric oxide production. Cardiol Clin 21:289–302

    Article  PubMed  Google Scholar 

  • Hoebel BG, Kostner GM, Graier WF (1997) Activation of microsomal cytochrome P450 mono-oxygenase by Ca2+ store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells. Br J Pharmacol 121:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Ziegelstein RC (2000) Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation 102:2541–2547

    PubMed  CAS  Google Scholar 

  • Kimura C, Oike M, Ito Y (2000) Hypoxia-induced alterations in Ca2+ mobilization in brain microvascular endothelial cells. Am J Physiol 279:H2310–H2318

    CAS  Google Scholar 

  • Klein CL, Kohler H, Bittinger F, Wagner M, Hermanns I, Grant K, Lewis JC, Kirkpatrick CJ (1994) Comparative studies on vascular endothelium in vitro. I. Cytokine effects on the expression of adhesion molecules by human umbilical vein, saphenous vein and femoral artery endothelial cells. Pathobiology 62:199–208

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol 287:R1014–R1030

    CAS  Google Scholar 

  • Liu BF, Xu X, Fridman R, Muallem S, Kuo TH (1996) Consequences of functional expression of the plasma membrane Ca2+ pump isoform 1a. J Biol Chem 271:5536–5544

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, Pardal R, Ortega-Saenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Physiol 63:259–287

    Article  PubMed  CAS  Google Scholar 

  • Metzen E, Wolff M, Fandrey J, Jelkmann W (1995) Pericellular PO2 and O2 consumption in monolayer cell cultures. Respir Physiol 100:101–106

    Article  PubMed  CAS  Google Scholar 

  • Michiels C, Arnould T, Remacle J (1993) Hypoxia-induced activation of endothelial cells as a possible cause of venous diseases—hypothesis. Angiology 44:639–646

    Article  PubMed  CAS  Google Scholar 

  • Michiels C, Arnould T, ThibautVercruyssen R, Bouaziz N, Janssens D, Remacle J (1997) Perfused human saphenous veins for the study of the origin of varicose veins: role of the endothelium and of hypoxia. Int Angiol 16:134–141

    Article  PubMed  CAS  Google Scholar 

  • Millar TM, Phan V, Tibbles LA (2007) ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic Biol Med 42:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10:5–15

    Article  PubMed  CAS  Google Scholar 

  • Nwasokwa ON (1995) Coronary artery bypass graft disease. Ann Intern Med 123:528–545

    PubMed  CAS  Google Scholar 

  • Paffett ML, Walker BR (2007) Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone. Essays Biochem 43:105–119

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein DP, Ali MH, Mungai PT, Hynes KL, Gewertz BL, Schumacker PT (2002) Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arterioscler Thromb Vasc Biol 22:566–573

    Article  PubMed  CAS  Google Scholar 

  • Pearson PJ, Evora PR, Discigil B, Schaff HV (1998) Hypoxia increases vasodilator release from internal mammary artery and saphenous vein grafts. Ann Thorac Surg 65:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Peers C (1997) Oxygen-sensitive ion channels. Trends Pharmacol Sci 18:405–408

    PubMed  CAS  Google Scholar 

  • Peers C, Scragg JL, Boyle JP, Fearon IM, Taylor SC, Green KN, Webster NJ, Ramsden M, Pearson HA (2005) A central role for ROS in the functional remodelling of L-type Ca2+ channels by hypoxia. Philos Trans R Soc Lond B Biol Sci 360:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Powell FL (2007) The influence of chronic hypoxia upon chemoreception. Respir Physiol Neurobiol 157:154–161

    Article  PubMed  CAS  Google Scholar 

  • Sage SO, van Breemen C, Cannell MB (1991) Sodium–calcium exchange in cultured bovine pulmonary artery endothelial cells. J Physiol 440:569–580

    PubMed  CAS  Google Scholar 

  • Schafer M, Ewald N, Schafer C, Stapler A, Piper HM, Noll T (2003) Signaling of hypoxia-induced autonomous proliferation of endothelial cells. FASEB J 17:449–451

    Article  PubMed  CAS  Google Scholar 

  • Scoumanne A, Kalamati T, Moss J, Powell JT, Gosling M, Carey N (2002) Generation and characterisation of human saphenous vein endothelial cell lines. Atherosclerosis 160:59–67

    Article  PubMed  CAS  Google Scholar 

  • Smith IF, Boyle JP, Plant LD, Pearson HA, Peers C (2003) Hypoxic remodeling of Ca2+ stores in type I cortical astrocytes. J Biol Chem 278:4875–4881

    Article  PubMed  CAS  Google Scholar 

  • Tan PH, Chan C, Xue SA, Dong R, Ananthesayanan B, Manunta M, Kerouedan C, Cheshire NJ, Wolfe JH, Haskard DO, Taylor KM, George AJ (2004) Phenotypic and functional differences between human saphenous vein (HSVEC) and umbilical vein (HUVEC) endothelial cells. Atherosclerosis 173:171–183

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 39:173–185

    Article  PubMed  CAS  Google Scholar 

  • Tran QK, Ohashi K, Watanabe H (2000) Calcium signalling in endothelial cells. Cardiovasc Res 48:13–22

    Article  PubMed  CAS  Google Scholar 

  • Unger RE, Krump-Konvalinkova V, Peters K, Kirkpatrick CJ (2002) In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc Res 64:384–397

    Article  PubMed  CAS  Google Scholar 

  • Webster NJ, Ramsden M, Boyle JP, Pearson HA, Peers C (2006) Amyloid peptides mediate hypoxic increase of L-type Ca2+ channels in central neurones. Neurobiol Aging 27:439–445

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Huang Y (2003) From nitric oxide to endothelial cytosolic Ca2+: a negative feedback control. Trends Pharmacol Sci 24:263–266

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Peers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aley, P.K., Bauer, C.C., Dallas, M.L. et al. Hypoxic Modulation of Ca2+ Signaling in Human Venous and Arterial Endothelial Cells. J Membrane Biol 227, 151–158 (2009). https://doi.org/10.1007/s00232-008-9147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9147-z

Keywords

Navigation