Skip to main content

Advertisement

Log in

Tubulin as a Binding Partner of the Heag2 Voltage-Gated Potassium Channel

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate interactions of the human ether-a-go-go channel heag2 with human brain proteins. For this, we used heag2–GST fusion proteins in pull-down assays with brain proteins and mass spectrometry, as well as coimmunoprecipitation. We identified tubulin and heat shock 70 proteins as binding to intracellular C-terminal regions of the channel. To study functional effects, heag2 channels were expressed in Xenopus laevis oocytes for two-electrode voltage clamping. Coexpression of α-tubulin or the application of colchicine significantly prolonged channel activation times. Application at different times of colchicine gave similar results. The data suggest that colchicine application and tubulin expression do not affect heag2 trafficking and that tubulin may associate with the channel to cause functional effects. Coexpression of heat shock 70 proteins had no functional effect on the channel. The role of tubulin in the cell cytoskeleton suggests a link for the heag2 channel in tubulin-dependent physiological functions, such as cellular proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bauer CK, Schwarz JR (2001) Physiology of EAG K+ channels. J Membr Biol 182:1–15

    PubMed  CAS  Google Scholar 

  • Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, Crociani O, Rosati B, Faravelli L, Olivotto M, Wanke E (1998) HERG encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 58:815–822

    PubMed  CAS  Google Scholar 

  • Bracey K, Wray D (2006) Inherited disorders of ion channels. In: Voltage-gated ion channels as drug targets, Wiley-VCH, New York

  • Bruggemann A, Stuhmer W, Pardo LA (1997) Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in Xenopus oocytes. Proc Natl Acad Sci USA 94:537–542

    Article  PubMed  CAS  Google Scholar 

  • Camacho J (2006) Ether a go-go potassium channels and cancer. Cancer Lett 233:1–9

    Article  PubMed  CAS  Google Scholar 

  • Camacho J, Sánchez A, Stühmer W, Pardo LA (2000) Cytoskeletal interactions determine the electrophysiological properties of human EAG potassium channels. Pfluegers Arch 441:167–174

    Article  CAS  Google Scholar 

  • Chappell TG, Welch WJ, Schlossman DM, Palter KB, Shlesinger MJ, Rothman JE (1986) Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45:3–13

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wang H, Vicini S, Olsen RW (2000) The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA 97:11557–11562

    Article  PubMed  CAS  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810

    Article  PubMed  CAS  Google Scholar 

  • Farias LMB, Ocana DB, Diaz L, Larrea F, Avila-Chavez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernandez-Gallegos E, Camacho-Arroyo I, Duenas-Gonzalez A, Perez-Cardenas E, Pardo LA, Morales A, Taja-Chayeb L, Escamilla J, Sanchez-Pena C, Camacho J (2004) Ether a go-go potassium channels as human cervical cancer markers. Cancer Res 64:6996–7001

    Article  PubMed  CAS  Google Scholar 

  • Ficker E, Dennis AT, Wang L, Brown AM (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circ Res 92:e87–e100

    Article  PubMed  CAS  Google Scholar 

  • Galli A, DeFelice LJ (1994) Inactivation of L-type Ca channels in embryonic chick ventricle cells: dependence on the cytoskeletal agents colchicine and taxol. Biophys J 67:2296–2304

    Article  PubMed  CAS  Google Scholar 

  • Givogri MI, Bongarzone ER, Campagnoni AT (2000) New insights on the biology of myelin basic protein gene: the neural–immune connection. J Neurosci Res 59:153–159

    Article  PubMed  CAS  Google Scholar 

  • Huzil JT, Luduena RF, Tuszynski J (2006) Comparative modeling of human beta tubulin isotypes and implications for drug binding. Nanotechnology 17:S90–S100

    Article  CAS  Google Scholar 

  • Hyams JS, Lloyd CW (1993). Microtubules. Wiley-Liss, New York

    Google Scholar 

  • Ju M, Wray D (2002) Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett 524:204–210

    Article  PubMed  CAS  Google Scholar 

  • Ju M, Wray D (2006) Molecular regions responsible for differences in activation between heag channels. Biochem Biophys Res Commun 342:1088–1097

    Article  PubMed  CAS  Google Scholar 

  • Ju M, Stevens L, Leadbitter E, Wray D (2003) The roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J Biol Chem 278:12769–12778

    Article  PubMed  CAS  Google Scholar 

  • Kirsch J, Langosch D, Prior P, Littauer UZ, Schmitt B, Betz H (1991) The 93-kDa glycine receptor-associated protein binds to tubulin. J Biol Chem 266:22242–22245

    PubMed  CAS  Google Scholar 

  • Lang F, Föller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Article  PubMed  CAS  Google Scholar 

  • Massover WH (1973) Complex surface invaginations in frog oocytes. J Cell Biol 58:485–491

    Article  PubMed  CAS  Google Scholar 

  • Mello de Queiroz F, Suarez-Kurtz G, Stuhmer W, Pardo LA (2006) Ether a go-go potassium channel expression in soft tissue sarcoma patients. Mol Cancer 5:42–54

    Article  CAS  Google Scholar 

  • Modesti NM, Barra HS (1986) The interaction of myelin basic protein with tubulin and the inhibition of tubulin carboxypeptidase activity. Biochem Biophys Res Commun 136:482–489

    Article  PubMed  CAS  Google Scholar 

  • Moran O, Tammaro P, Nizzari M, Conti F (2000) Functional properties of sodium channels do not depend on the cytoskeleton integrity. Biochem Biophys Res Commun 276:204–209

    Article  PubMed  CAS  Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    Article  PubMed  CAS  Google Scholar 

  • Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology 19:285–292

    Article  PubMed  CAS  Google Scholar 

  • Pardo LA, Brüggemann A, Camacho J, Stühmer W (1998) Cell cycle-related changes in the conducting properties of r-eag K+ channels. J Cell Biol 143:767–775

    Article  PubMed  CAS  Google Scholar 

  • Pardo LA, del Camino D, Sánchez A, Alves F, Brüggemann A, Beckh S, Stühmer W (1999) Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Lazdunski M (2004) The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pfluegers Arch 448:261–273

    Article  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pestell RQW (1975) Microtubule protein synthesis during oogenesis and early embryogenesis in Xenopus laevis. Biochem J 145:527–534

    PubMed  CAS  Google Scholar 

  • Sackett DL, Varma JK (1993) Molecular mechanism of colchicine action: induced local unfolding of beta-tubulin. Biochemistry 32:13560–13565

    Article  PubMed  CAS  Google Scholar 

  • Schlossman DM, Schmid SL, Braell WA, Rothman JE (1984) An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol 99:723–733

    Article  PubMed  CAS  Google Scholar 

  • Schönherr R, Gessner G, Löber K, Heinemann SH (2002) Functional distinction of human EAG1 and EAG2 potassium channels. FEBS Lett 514:204–208

    Article  PubMed  Google Scholar 

  • Toral C, Mendoza-Garrido ME, Azorin E, Hernandez-Gallegos E, Gomora JC, Delgadillo DM, Solano-Agama C, Camacho J (2007) Effect of extracellular matrix on adhesion, viability, actin cytoskeleton and K+ currents of cells expressing human ether a go-go channels. Life Sci 81:255–265

    Article  PubMed  CAS  Google Scholar 

  • van Rossum D, Kuhse J, Betz H (1999) Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits. J Neurochem 72:962–973

    Article  PubMed  Google Scholar 

  • Venter H, Ashcroft AE, Keen JN, Henderson PJ, Herbert RB (2002) Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose-H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2–13C]histidine and (15)NH(3). Biochem J 363(Pt 2):243–252

    Article  PubMed  CAS  Google Scholar 

  • Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pfluegers Arch 448:274–286

    Article  CAS  Google Scholar 

  • Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397:69–72

    Article  PubMed  CAS  Google Scholar 

  • Wilson R, Brophy PJ (1989) Role for the oligodendrocyte cytoskeleton in myelination. J Neurosci Res 22:439–448

    Article  PubMed  CAS  Google Scholar 

  • Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35–42

    Article  PubMed  CAS  Google Scholar 

  • Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Biotechnology and Biological Sciences Research Council. We thank E. Morrison for advice and M. Peckham and S. Dunn for help with the immunoprecipitation experiments. The mass spectrometry was carried out by J. Keen in the Faculty Proteomics Facility, funded by a Joint Research Equipment Initiative to J. B. C. Findlay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Wray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracey, K., Ju, M., Tian, C. et al. Tubulin as a Binding Partner of the Heag2 Voltage-Gated Potassium Channel. J Membrane Biol 222, 115–125 (2008). https://doi.org/10.1007/s00232-008-9104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9104-x

Keywords

Navigation