Skip to main content
Log in

Extracellular Matrix of Porcine Pericardium: Biochemistry and Collagen Architecture

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Pericardial tissue has been used to construct bioprostheses employed in the repair of different kinds of injuries, mostly cardiac. However, calcification and mechanical failure have been the main causes of the limited durability of cardiac bioprostheses constructed with bovine pericardium. In the course of this work, a study was conducted on porcine fibrous pericardium, its microscopic structure and biochemical nature. The general morphology and architecture of collagen were studied under conventional light and polarized light microscopy. The biochemical study of the pericardial matrix was conducted according to the following procedures: swelling test, hydroxyproline and collagen dosage, quantification of amino acids in soluble collagen, component extraction of the extracellular matrix of the right and left ventral regions of pericardium with different molarities of guanidine chloride, protein and glycosaminoglycan (GAG) dosage, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and total GAG analysis. Microscopic analysis showed collagen fibers arranged in multidirectionally oriented layers forming a closely knit web, with a larger number of fibers obliquely oriented, initiating at the lower central region toward the upper left lateral relative to the heart. No qualitative differences were found between proteins extracted from the right and left regions. Likewise, no differences were found between fresh and frozen material. Protein dosages from left frontal and right frontal pericardium regions showed no significant differences. The quantities of extracted GAGs were too small for detection by the method used. Enzymatic digestion and electrophoretic analysis showed that the GAG found is possibly dermatan sulfate. The proteoglycan showed a running standard very similar to the small proteoglycan decorin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Graph 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ault NK, Hoffman AH (1992) A composite micromechanical model for connective tissues: Part II. Application to rat tail tendon and joint capsule. J Biomech Eng 114:137–141

    PubMed  CAS  Google Scholar 

  • Barros PSM, Safatle AMV, Rigueiro M (1999) Experimental lamellar corneal graft in dogs using preserved equine pericardium. Braz J Vet Res Anim Sci 36:71–76

    Article  Google Scholar 

  • Bashey RI, Bashey HM, Jimenez SA (1978) Characterization of pepsin-solubilized bovine heart-valve collagen. Biochem J 173:885–894

    PubMed  CAS  Google Scholar 

  • Beeley JG (1985) Glycoprotein and proteoglycan techniques, vol 16. Elsevier, New York, pp 268–270

    Google Scholar 

  • Blum B, Beier H, Gross HJ (1987) Improved silver staining of plant proteins RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brown DC, Vogel KG (1989) Characteristics of the in vitro interaction of a small proteoglycan (PGII) of bovine tendon type I collagen. Matrix 9:468–479

    PubMed  CAS  Google Scholar 

  • Chanda J, Kuribayashi R, Abe T (1997) Use of glutaraldehyde-chitosan treated porcine pericardium as a pericardial substitute. Biomaterials 17:1087–1091

    Article  Google Scholar 

  • Dietrich CP, Dietrich SM (1976) Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Anal Biochem 70:645–647

    Article  PubMed  CAS  Google Scholar 

  • Farndale RW, Buttle DJ, Barret AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochem Biophys Acta 883:173–177

    PubMed  CAS  Google Scholar 

  • Fentie IH, Allen DJ, Schenck MH, Didio LJA (1986) Comparative electron microscopic study of bovine, porcine and human parietal pericardium, as materials for cardiac valve bioprostheses. J Submicrosc Cytol 18:53–65

    PubMed  CAS  Google Scholar 

  • Fisher LW (1999) Decorin. In: Kreis T, Vale R (eds) Extracellular matrix, anchor and adhesion proteins. Oxford University Press, New York, pp 241–254

  • Gathercole LJ, Keller A (1991) Crimp morphology in fibre-forming collagens. Matrix 11:214–234

    PubMed  CAS  Google Scholar 

  • Grodzinsky AJ (1983) Electrochemical and physicochemical properties of connective tissue. CRC Crit Rev Biomed Eng 9:133–199

    CAS  Google Scholar 

  • Heinegård D, Pimentel ER (1992) Cartilage matrix proteins. In: Kuttner KE, Scheleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 95–111

  • Heinegård D, Sommarin Y (1987) Proteoglycan: an overview. Methods Enzymol 144:319–373

    PubMed  Google Scholar 

  • Hollinshead WH (1980) O sistema circulatório. In: Hollishead WH (ed) Livro texto de anatomia humana. Harper & Row do Brasil, São Paulo, pp 82–83

    Google Scholar 

  • Iozzo RV (1997) The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 32:141–174

    PubMed  CAS  Google Scholar 

  • Jorge-Herrero E, Fernandez P, Turnay J, Olmo N, Calero P, Garcia R, Freile I, Castillo-Olivares JL (1999) Influence of different chemical cross-linking treatment on the properties of bovine pericardium and collagen. Biomaterials 20:539–545

    Article  PubMed  CAS  Google Scholar 

  • Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105

    Article  PubMed  CAS  Google Scholar 

  • Klaus W, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    Google Scholar 

  • Koob TJ, Vogel KG (1987) Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J Orthop Res 5:414–424

    Article  PubMed  CAS  Google Scholar 

  • Kuc IM, Scott PG (1997) Increased diameters of collagen fibrils precipitated in vitro in the presence of decorin from various connective tissues. Connect Tissue Res 36:287–296

    Article  PubMed  CAS  Google Scholar 

  • Laemmli VK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage Ty. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Langdon SE, Chernecky R, Pereira DA, Lee JM (1999) Biaxial mechanical/structural effects of biaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials 20:137–153

    Article  PubMed  CAS  Google Scholar 

  • Loke WK, Khor E, Wee A, Teoh SH, Chian KS (1996) Hybrid biomaterials based on the interaction of polyurethane oligomers with porcine pericardium. Biomaterials 17:2163–2172

    Article  PubMed  CAS  Google Scholar 

  • Michelacci YM, Horton DSPQ (1989) Proteoglycans from the cartilage of young hammerhead shark Sphyrna lewini. Comp Biochem Physiol 92:651–658

    Article  Google Scholar 

  • Moore KL, Dalley AF (2001) Torax. In: Moore KL, Dalley AF (eds) Anatomia orientada para a clínica, 4th ed. Rio de Janeiro, Guanabara Koogan, pp 52–151

    Google Scholar 

  • Olmos ZR, Jasso VR, Sotres VA, Cedillo LI, Arreola RJL, Gaxiola GM (1997) Utilidad del pericárdio bovino tratado com glutaraldeido em lãs resecciones pulmonares no anatômicas em perros. Ver Inst Nal Enf Resp Mex 10:155–159

    Google Scholar 

  • Petite H, Duval J, Frei V, Abdul-Malak N, Sigot-Luizard M, Herbage D (1995) Cytocompatibility of calf pericardium treated by glutaraldehyde and by the acyl azide methods in an organotypic culture model. Biomaterials 16:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Pires AC, Saporito WF, Leao LEV (1997) Pericárdio bovino utilizado como remendo no sistema cardiovascular. Ver Brás Cir Cardivasc 12:176–187

    Google Scholar 

  • Reddy GK, Gum S, Stehno-Bittel L, Enwemeka CS (1998) Biochemistry and biomechanics of healing tendon: Part I. Effects of rigid plaster casts and functional casts. Med Sci Sports Exerc 30:794–800

    Google Scholar 

  • Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann Rheum Dis 53:359–366

    Article  PubMed  CAS  Google Scholar 

  • Sacks MS, Chuong CJC, More R (1994) Collagen fiber architeture of bovine pericardium. ASAIO J 40:M632–M637

    Google Scholar 

  • Scott JE (1996) Proteodermatan and proteokeratan sulfate (decorin, lumican/ fibromodulin) proteins are horse shoe shaped. Implications for their interactions with collagen. Biochemistry 35:8795–8799

    Article  PubMed  CAS  Google Scholar 

  • Simionescu D, Iozzo R, Kefalides NA (1989) Bovine pericardial proteoglycan: biochemical, immunochemical and ultrastructural studies. Matrix 9:301–310

    PubMed  CAS  Google Scholar 

  • Slack C, Flint MH, Thompson BM (1984) The effect of tensional load on isolated embryonic chick tendons in organ culture. Connect Tissue Res 12:229–247

    Article  PubMed  CAS  Google Scholar 

  • Stegemann H, Stalder K (1967) Determination of hydroxyproline. Clin Chim Acta 18:267–273

    Article  PubMed  CAS  Google Scholar 

  • Stehno-Bittel L, Reddy GK, Gum S, Enwemeka CS (1998) Biochemistry and biomechanics of healing tendon: Part I. Effects of rigid plaster casts and functional casts. Med Sci Sports Exerc 30:788–793

    Google Scholar 

  • Urban JPG, Maroudas A, Bayliss MT, Dillon MT (1979) Swelling pressures of proteoglycans at concentrations found in cartilaginous tissues. Biorheology 16:447–464

    PubMed  CAS  Google Scholar 

  • Vidal BC (1966) Macromolecular disorientation in detached tendons. Protoplasma Bd 62:121–131

    Article  CAS  Google Scholar 

  • Vidal BC (1980) The part played by proteoglycans and structural glycoproteins in the macromolecular orientation of collagen bundles. Cell Mol Biol 26:415–421

    CAS  Google Scholar 

  • Vidal BC (1984) Ordem molecular y haces de colageno. Trab Inst Cajal 75:19–27

    CAS  Google Scholar 

  • Vidal BC (1987) Métodos em Biologia Celular. In: Vidal BC, Mello MLS (eds) Biologia Celular. São Paulo, Atheneu, pp 5–34

  • Vidal BC (1995) From collagen type I solution to fibers with a helical pattern: a self-assembly phenomenon. C R Acad Sci Paris 318:831–836

    CAS  Google Scholar 

  • Vidal BC (2003) Image analysis of tendon helical superstructure using interference and polarized light microscopy. Micron 34:423–432

    Article  CAS  Google Scholar 

  • Vidal BC, Mello MLS (1972) Anisotropic properties of toluidine blue-stained collagen. Ann Histochim 18:106–122

    Google Scholar 

  • Viswanadham RK, Agrawd DC, Kramer E (1976) Environmental effects on the mechanical properties of reconstituted collagen hollow fiber membranes. J Poly Sci Phys 14:2195–2209

    Article  CAS  Google Scholar 

  • Whittaker P, Boughner DR, Perkins DG, Canham PB (1987) Quantitative structural analysis of collagen in chordae tendineae and its relation to floppy mitral valves and proteoglycan infiltration. Br Heart 57:264–269

    Article  CAS  Google Scholar 

  • Yannas IV, Grodzinsky AJ (1973) Electromechanical energy conversion with collagen fibers in an aqueous medium. J Mechanochem Cell Motility 2:113–125

    CAS  Google Scholar 

  • Zingales B (1984) Analysis of protein sodium dodecyl sulphate-polyacrylamide gel electrophoresis. In: Genes and antigens of parasites. Rio de Janeiro, Fiocruz, pp 357–363

    Google Scholar 

Download references

Acknowledgement

This study was financially supported by CAPES: Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior, FAPESP: Fundação de Amparo à Pesquisa de São Paulo and FAPEMIG: Fundação de Apoio à Pesquisa de Minas Gerais, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Sachsida Braga-Vilela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga-Vilela, A.S., Pimentel, E.R., Marangoni, S. et al. Extracellular Matrix of Porcine Pericardium: Biochemistry and Collagen Architecture. J Membrane Biol 221, 15–25 (2008). https://doi.org/10.1007/s00232-007-9081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9081-5

Keywords

Navigation