Skip to main content
Log in

Surviving High-Intensity Field Pulses: Strategies for Improving Robustness and Performance of Electrotransfection and Electrofusion

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Electrotransfection and electrofusion, both widely used in research and medical applications, still have to face a range of problems, including the existence of electroporation-resistant cell types, cell mortality and also great batch-to-batch variations of the transfection and fusion yields. In the present study, a systematic analysis of the parameters critical for the efficiency and robustness of electromanipulation protocols was performed on five mammalian cell types. Factors examined included the sugar composition of hypotonic pulse media (trehalose, sorbitol or inositol), the kinetics of cell volume changes prior to electropulsing, as well as the growth medium additives used for post-pulse cell cultivation. Whereas the disaccharide trehalose generally allowed regulatory volume decrease (RVD), the monomeric sugar alcohols sorbitol and inositol inhibited RVD or even induced secondary swelling. The different volume responses could be explained by the sugar selectivity of volume-sensitive channels (VSC) in the plasma membrane of all tested cell types. Based on the volumetric data, highest transfection and fusion yields were mostly achieved when the target cells were exposed to hypotonicity for about 2 min prior to electropulsing. Longer hypotonic treatment (10–20 min) decreased the yields of viable transfected and hybrid cells due to (1) the cell size reduction upon RVD (trehalose) or (2) the excessive losses of cytosolic electrolytes through VSC (inositol/sorbitol). Doping the plasma membrane with lipophilic anions prevented both cell shrinkage and ion losses (probably due to VSC inhibition), which in turn resulted in increased transfection and fusion efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Antonenko Y.N., Rokitskaya T.I., Kotova E.A. 1999. Effect of dipole modifiers on the kinetics of sensitized photoinactivation of gramicidin channels in bilayer lipid membranes. Membr. Cell Biol. 13:111–120

    CAS  PubMed  Google Scholar 

  2. Barrau C., Teissie J., Gabriel B. 2004. Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization. Bioelectrochem. 63:327–332

    Article  CAS  Google Scholar 

  3. Braet K., Mabilde C., Cabooter L., Rapp G., Leybaert L. 2004. Electroporation loading and photoactivation of caged InsP(3): tools to investigate the relation between cellular ATP release in response to intracellular InsP(3) elevation. J. Neurosci. Meth. 132:81–89

    CAS  Google Scholar 

  4. Cegovnik U., Novakovic S. 2004. Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Bioelectrochem. 62:73–82

    Article  CAS  Google Scholar 

  5. Cseh R., Benz R. 1998. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by Langmuir adsorption isotherms alone. Biophys J. 74:1399–1408

    CAS  PubMed  Google Scholar 

  6. Friedrich U., Stachowicz N., Simm A., Fuhr G., Lukas K., Zimmermann U. 1998. High efficiency electrotransfection with aluminum electrodes using microsecond controlled pulses. Bioelectrochem. Bioenerg. 47:103–111

    Article  CAS  Google Scholar 

  7. Fuhr G., Zimmermann U., Shirley S.G. 1996. Cell motion in time-varying fields: Principles and potential. In: Electromanipulation of Cells. Zimmermann U., Neil G. (eds). CRC, Boca Raton, FL pp. 259–328

    Google Scholar 

  8. Fürst J., Gschwentner M., Ritter M., Bottà G., Jakab ML, Mayer M., Garavaglia L., Bazzini C., Rodighiero S., Meyer G., Eichmüller S., Wöll E., Paulmichl M. 2002. Molecular and functional aspects of anionic channels activated during regulatory volume decrease in mammalian cells. Pfluegers Arch. -Eur. J. Physiol. 444:1–25

    Google Scholar 

  9. Gaynor P., Wells D.N., Oback B. 2005. Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system. Med. Biol. Eng. Comput. 43:150–154

    CAS  PubMed  Google Scholar 

  10. Grund E.M., Muise-Helmericks R.C. 2005. Cost efficient and effective gene transfer into the human natural killer cell line, NK92. J. Immun. Meth. 296:31–36

    Article  CAS  Google Scholar 

  11. Hertel C., Terzi E., Hauser N., Jakob-Rotne R., Seelig J., Kemp J.A. 1997. Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity. Proc. Natl. Acad. Sci. USA 94:9412–9416

    CAS  PubMed  Google Scholar 

  12. Hojo S., Shimizu K., Yositake H., Muraji M., Tsujimoto H., Tatebe W. 2003. The relationship between electropermeabilization and cell cycle and cell size of Saccharomyces cerevisiae. IEEE Tram. Nanobiosci. 2:35–39

    Article  Google Scholar 

  13. Isambert H. 1998. Understanding the electroporation of cells and artificial bilayer membranes. Phys. Rev. Lett. 80:3404–3407

    Article  CAS  Google Scholar 

  14. Jackson P.S., Strange K. 1993. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265:C1489–C1500

    CAS  PubMed  Google Scholar 

  15. Jones T.B. 1995. Electromechanics of Particles. Cambridge University Press, New York

    Google Scholar 

  16. Kürschner M., Nielsen K., Andersen C., Sukhorukov V.L., Schenk W.A., Benz R., Zimmermann U. 1998. Interaction of lipophilic ions with the plasma membrane of mammalian cells studied by electrorotation. Biophys. J. 74:3031–3043

    PubMed  Google Scholar 

  17. Lang F. 1998. Cell Volume Regulation, Karger, Basel

    Google Scholar 

  18. Li S.L. 2004. Electroporation gene therapy: New developments in vivo and in vitro. Curr. Gene Ther. 4:309–316

    CAS  PubMed  Google Scholar 

  19. Lynch P.T., Davey M.R. 1996. Electrical Manipulation of Cells, Chapman & Hall, NY

    Google Scholar 

  20. Muller K.J., Sukhorukov V.L., Zimmermann U. 2001. Reversible electropermeabilization of mammalian cells by high-intensity, ultra-short pulses of submicrosecond duration. J. Membrane Biol. 184:161–170

    Google Scholar 

  21. Mussauer H., Sukhorukov V.L., Zimmermann U. 2001. Trehalose improves survival of electrotransfected mammalian cells. Cytometry 45:161–169

    Article  CAS  PubMed  Google Scholar 

  22. Okada Y. 1998. Cell Volume Regulation. The Molecular Mechanism and Volume Sensing Machinery, Elsevier, Amsterdam

    Google Scholar 

  23. Pucihar G., Kotnik T., Kanduser M., Miklavcic D. 2001. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochem. 54:107–115

    Article  CAS  Google Scholar 

  24. Reuss R., Ludwig J., Shirakashi R., Ehrhart F., Zimmermann H., Schneider S., Weber M.M., Zimmermann U., Schneider H., Sukhorukov V.L. 2004. Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways. J. Membrane. Biol. 200:67–81

    Article  CAS  Google Scholar 

  25. Schmidt E., Leinfelder U., Gessner P., Zillikens D., Brocker E.B., Zimmermann U. 2001. CD19+ B lymphocytes are the major source of human antibody-secreting hybridomas generated by electrofusion. J. Immunol. Methods 255:93–102

    Article  CAS  PubMed  Google Scholar 

  26. Schmitt J.J., Zimmermann U. 1989. Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions. Biochim. Biophys. Acta 983:42–50

    CAS  PubMed  Google Scholar 

  27. Shimizu K., Kuriyama H., Kjaergaard J., Lee W., Tanaka H., Shu S. 2004. Comparative analysis of antigen loading strategies of dendritic cells for tumor immunotherapy. J. Immunother. 27:265–272

    CAS  PubMed  Google Scholar 

  28. Shirakashi R., Köstner C.M., Müller K.J., Kürschner M., Zimmermann U., Sukhorukov V.L. 2002. Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J. Membrane Biol. 189:45–54

    Article  CAS  Google Scholar 

  29. Smejtek P., Wang S. 1991. Domains and anomalous adsorption-isotherms of dipalmitoylphosphatidylcholine membranes and lipophilic ions — pentachlorophenolate, tetraphenylborate, and dipicrylamine. Biophys. J. 59:1064–1073

    CAS  PubMed  Google Scholar 

  30. Sukhorukov V.L., Zimmermann U. 1996. Electrorotation of erythrocytes treated with dipicrylamine: mobile charges within the membrane show their “signature” in rotational spectra. J. Membrane Biol. 153:161–169

    Article  CAS  Google Scholar 

  31. Sukhorukov V.L., Kürschner M., Dilsky S., Lisec T., Wagner B., Schenk W.A., Benz R., Zimmermann U. 2001. Phloretin-induced changes of lipophilic ion transport across the plasma membrane of mammalian cells. Biophys. J. 81:1006–1013

    CAS  PubMed  Google Scholar 

  32. Sukhorukov V.L., Mussauer H., Zimmermann U. 1998. The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high- conductivity media. J. Membrane Biol. 163:235–245

    Article  CAS  Google Scholar 

  33. Weaver J.C. 2003. Electroporation of biological membranes from multicellular to nano scales. IEEE Trans. Diel. Electr. Insul. 10:754–768

    CAS  Google Scholar 

  34. Weise J.B., Maune S., Gorogh T., Kabelitz D., Arnold N., Pfisterer J., Hilpert F., Heiser A. 2004. A dendritic cell based hybrid cell vaccine generated by electrofusion for immunotherapy strategies in HNSCC. Auris Nasus Larynx. 31:149–153

    Article  PubMed  Google Scholar 

  35. Zarnitsyn V.G., Prausnitz A.R., Chizmadzhev Y.A. 2004. Physical methods of nucleic acid delivery into cells and tissues. Biol. Membrany 21:355–373

    CAS  Google Scholar 

  36. Zimmermann U., Friedrich U., Mussauer H., Gessner P., Hämel K., Sukhorukov V.L. 2000. Electromanipulation of mammalian cells: fundamentals and application. IEEE Trans. Plasma Sci. 28:72–82

    Article  CAS  Google Scholar 

  37. Zimmermann U., Gessner P., Schnettler R., Perkins S., Foung S.K.H. 1990. Efficient hybridization of mouse-human cell lines by means of hypo-osmolar electrofusion. J. Immunolog. Meth. 134:43–50

    CAS  Google Scholar 

  38. Zimmermann U., Neil G.A. 1996. Electromanipulation of Cells, CRC, Boca Raton, FL

    Google Scholar 

  39. Zimmermann U., Pilwat G., Riemann F. 1974. Reversible dielectric breakdown of cell membranes by electrostatic fields. Z. Naturforsch. 29c:304–305

    Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Deutsche Forschungsgemeinschaft to U.Z. and V.L.S (Zi 99/12), and to W.A.S. and V.L.S. (SCHE209/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhorukov, V., Reuss, R., Zimmermann, D. et al. Surviving High-Intensity Field Pulses: Strategies for Improving Robustness and Performance of Electrotransfection and Electrofusion. J Membrane Biol 206, 187–201 (2005). https://doi.org/10.1007/s00232-005-0791-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0791-2

Keywords

Navigation