Skip to main content
Log in

Local and global sensitivity analysis of a coupled heat and moisture transfers model: effect of the variability of cob material properties

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Among earthen construction techniques, cob might be an interesting solution to mitigate greenhouse gases emissions and energy consumption of the building industry. One main issue encountered is that the cob material shows large variability of hygrothermal properties, which could consequently have an impact on the reliability of the estimation of the energy consumption of cob buildings. At the wall scale, the hygrothermal properties significantly influence the kinetics of moisture and heat transfers through the building shell, both being coupled. In order to measure the relative contribution of the variation of the hygrothermal properties, a sensitivity analysis of a coupled heat and moisture transfer model has been carried out on a cob wall. More specifically, a local sensitivity analysis has been performed (one model input wobbles around a reference value) and compared with a global sensitivity analysis, which may provide the potential interaction between model inputs. For the latter approach, the Morris method was used and allows to find the influence level of material properties and the relationships with model outputs. Two study cases have been performed: a static loading case, to find temperature and water vapour pressure profiles across the cob wall until the steady state and a dynamic loading case under a 2.5 years external dynamic loading (St-Nazaire meteorological data, France). As main results, the global approach showed in general a higher variability of properties, the sorption isotherms and the water vapour permeability were the most influential input parameters on humidity profiles while on temperature ones, the variability of both properties led up to 0.25 °C variation range. The influence of thermal properties was very sensitive to the daily-loading variation while that of the hygric properties was very sensitive to the seasonal-loading variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data related to this paper are available under request.

Abbreviations

BCs:

Boundary conditions

SI :

Sorption Isotherm

SL:

Static loading

SA:

Sensitivity Analysis

LA:

Local Analysis

DL:

Dynamic loading

\(C_{m}\) [kg/kg.Pa]:

Moisture storage capacity

\(C_p\) [J/kg.K]:

Specific heat capacity

\(j_m\) [\({kg/m^2.s}\)]:

Moisture flux density

\(j_v\) [\({kg/m^2.s}\)]:

Vapour flux density

\(k_m\) [kg/m.s.Pa]:

Moisture permeability

\(k_l\) [kg/m.s.Pa]:

Liquid water permeability

\(k_0\) [\(m^2\)]:

Intrinsic permeability

\(k_T\) [kg/m.s.K]:

Thermogradient coefficient

\(L_v\) [J/kg]:

Evaporation latent heat

\(\lambda\) [W/m.K]:

Thermal conductivity

\(M_w\) [kg/mol]:

Water molecule molar mass

T [K or \(^{\circ }C\)]:

Temperature

\(\mu _w\) [Pa.s]:

Dynamic viscosity of water

\(P_v\) [Pa]:

Water vapour pressure

\(P_{vsat}\) [Pa]:

Water vapour pressure at saturation

R [J/mol.K]:

Ideal gas constant (8.314)

RH [%]:

Relative humidity

\(\rho _w\) [\(kg/m^3\)]:

Water density

\(\rho _s\) [\(kg/m^3\)]:

Material apparent density

\(\sigma _0\) [−]:

Phase change coefficient

w[kg/kg]:

Water content

\(T_{int}\) [K or \(^{\circ }C\)], \(RH_{int}\) [%]:

Interior Temperature and RH

\(T_{init}\) [K or \(^{\circ }C\)], \(RH_{init}\) [%]:

Set point temperature and RH

References

  1. Agence de la Transition écologique (ADEME), Chiffres clés du bâtiment, 2013

  2. Roberts S (2008) Altering existing buildings in the UK. Energy policy 36(12):4482–4486

    Article  Google Scholar 

  3. Wakili KG, Binder B, Zimmermann M, Tanner C (2014) Efficiency verification of a combination of high performance and conventional insulation layers in retrofitting a 130-year old building. Energy Build 82:237–242

    Article  Google Scholar 

  4. Charai M, Mezrhab A, Moga L (2022) A structural wall incorporating biosourced earth for summer thermal comfort improvement: hygrothermal characterization and building simulation using calibrated PMV-PPD model. Build Environ 212:108842

    Article  Google Scholar 

  5. Fabbri A, Morel JC, Aubert JE, Bui QB, Gallipoli D, Ventura A, Reddy VBV, Hamard E, Pelé-Peltier A, Abhilash HN (2022) An overview of the remaining challenges of the RILEM TC 274-TCE, testing and characterisation of earth-based building materials and elements. vol 6. pp 150–157

  6. Künzel HM, Holm A, Zirkelbach D, Karagiozis AN (2005) Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope. Sol Energy 78:554–561

    Article  Google Scholar 

  7. Ferroukhi MY, Abahri K, Belarbi R, Limam K, Nouviaire A (2016) Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components. Heat Mass Transf 52:2257–2269

    Article  Google Scholar 

  8. Philip JR, De Vries DA (1957) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union 38(2):222

    Article  Google Scholar 

  9. Luikov AV (1975) Systems of differential equations of heat and mass transfer in capillary-porous bodies (review). Int J Heat Mass Transf 18:1–14

    Article  Google Scholar 

  10. Moyne C (1987) Transferts couples chaleur-masse lors du séchage : prise en compte du mouvement de la phase gazeuse. PhD thesis, Vandoeuvre-les-Nancy, INPL

  11. Hamard E (2017) Rediscovering of vernacular adaptative construction strategies for sustainable modern building: application to cob and rammed earth. PhD thesis, Université de Lyon

  12. Vinceslas T (2019) Caractérisation d’éco-matériaux terre-chanvre en prenant en compte la variabilité des ressources disponibles localement. PhD thesis, Lorient

  13. Aubert J-E (2013) Caractérisation des briques de terre crue de Midi-Pyrénées, tech. rep., Laboratoire de Recherche en Architecture (LRA) - ENSA Toulouse

  14. Niroumand H, Zain MFM, Jamil M (2013) Various types of earth buildings. Procedia - Social and Behavioral Sciences 89:226–230

    Article  Google Scholar 

  15. Hugo H, Guillaud H, CRAterre (2006) Traité de construction en terre. Editions Paranthèses

  16. Ma C, Xie Y, Long G, Chen B, Chen L (2017) Effects of fly ash on mechanical and physical properties of earth-based construction. Constr Build Mater 157:1074–1083

    Article  Google Scholar 

  17. Narayanaswamy AH, Walker P, Venkatarama Reddy BV, Heath A, Maskell D (2020) Mechanical and thermal properties, and comparative life-cycle impacts, of stabilised earth building products. Constr Build Mater 243:118096

    Article  Google Scholar 

  18. Barbero-Barrera MM, Jové-Sandoval F, González Iglesias S (2020) Assessment of the effect of natural hydraulic lime on the stabilisation of compressed earth blocks. Constr Build Mater 260:119877

    Article  Google Scholar 

  19. Toufigh V, Kianfar E (2019) The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts. Constr Build Mater 200:616–629

    Article  Google Scholar 

  20. Imanzadeh S, Hibouche A, Jarno A, Taibi S (2018) Formulating and optimizing the compressive strength of a raw earth concrete by mixture design. Constr Build Mater 163:149–159

    Article  Google Scholar 

  21. Perrot A, Rangeard D, Menasria F, Guihéneuf S (2018) Strategies for optimizing the mechanical strengths of raw earth-based mortars. Constr Build Mater 167:496–504

    Article  Google Scholar 

  22. Laborel-Préneron A, Magniont C, Aubert J-E (2018) Hygrothermal properties of unfired earth bricks: effect of barley straw, hemp shiv and corn cob addition. Energy Build 178:265–278

    Article  Google Scholar 

  23. Laborel-Préneron A, Aubert JE, Magniont C, Tribout C, Bertron A (2016) Plant aggregates and fibers in earth construction materials: a review. Constr Build Mater 111:719–734

    Article  Google Scholar 

  24. Ashour T, Wieland H, Georg H, Bockisch F-J, Wu W (2010) The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Mater Des 31:4676–4685

    Article  Google Scholar 

  25. Hall M, Allinson D (2009) Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Appl Therm Eng 29:740–747

    Article  Google Scholar 

  26. Cagnon H, Aubert JE, Coutand M, Magniont C (2014) Hygrothermal properties of earth bricks. Energy Build 80:208–217

    Article  Google Scholar 

  27. Baescher GB, Christian JT (2008) Spatial variability and geotechnical reliability. In: Reliability-Based Design in Geotechnical Engineering: Computations and Applications. pp 76–133

  28. Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Meloni C, Dellino G (eds) Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications. Springer

  29. Hawila AAW, Merabtine A (2021) A statistical-based optimization method to integrate thermal comfort in the design of low energy consumption building. J Build Eng 33:101661

    Article  Google Scholar 

  30. Andrianandraina Ventura A, Kiessé TS, Cazacliu B, Idir R, Werf HMGVD (2015) Sensitivity analysis of environmental process modeling in a life cycle context: a case study of hemp crop production. J Ind Ecol 19(6):978–993

    Article  Google Scholar 

  31. Goffart J, Woloszyn M (2018) RBD-FAST: une méthode d’analyse de sensibilité rapide et rigoureuse pour la garantie de performance énergétique, Conférence IBPSA France - Bordeaux. p 9

  32. Stéphan E, Caucheteux A, Cantin R, Tasca-Guernouti S, Michel P (2013) Sensitivity analysis of an energyplus simulation model of the ambient humidity in an old building. In: 13th Conference of International Building Performance Simulation. Chambéry, France

  33. Delgarm N, Sajadi B, Azarbad K, Delgarm S (2018) Sensitivity analysis of building energy performance: a simulation-based approach using OFAT and variance-based sensitivity analysis methods. J Build Eng 15:181–193

    Article  Google Scholar 

  34. Senga Kiessé T, Ventura A, van der Werf HMG, Cazacliu B, Idir R, Andrianandraina (2017) Introducing economic actors and their possibilities for action in LCA using sensitivity analysis: application to hemp-based insulation products for building applications. J Clean Prod 142:3905–3916

    Article  Google Scholar 

  35. Van-Loc TA, Senga Kiesse T, Bonnet S, Ventura A (2018) Application of sensitivity analysis in the life cycle design for the durability of reinforced concrete structures in the case of XC4 exposure class. Cem Concr Compos 87:53–62

    Article  Google Scholar 

  36. Senga Kiesse T, Bonnet S, Amiri O, Ventura A (2020) Analysis of corrosion risk due to chloride diffusion for concrete structures in marine environment. Mar Struct 73:102804

    Article  Google Scholar 

  37. Othmen I, Poullain P, Leklou A-N, Caucheteux A (2014) Sensitivity analysis of the Künzel model: application to the study of the hygrothermal transfer in a tuffeau wall. In: Heat Transfer XIII:Simulation and Experiments in Heat and Mass Transfer, WIT Press

  38. Le Tran AD, Maalouf C, Mai TH, Wurtz E, Collet F (2010) Transient hygrothermal behaviour of a hemp concrete building envelope. Energy Build 42:1797–1806

    Article  Google Scholar 

  39. Bui R, Goffart J, McGregor F, Woloszyn M, Fabbri A, Grillet A-C (2020) Uncertainty and sensitivity analysis applied to a rammed earth wall: evaluation of the discrepancies between experimental and numerical data. In: E3S Web of Conferences, vol 172. p 17004

  40. Issaadi N (2015) Effets de la variabilité des propriétés de matériaux cimentaires sur les transferts hygrothermiques : développement d’une approche probabiliste. PhD thesis, Université La Rochelle, Ecole royale militaire de Bruxelles

  41. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  42. Qin M, Belarbi R, Aît-Mokhtar A, Nilsson L-O (2008) Simultaneous heat and moisture transport in porous building materials transport properties: evaluation of nonisothermal moisture. J Mater Sci 43:3655–3663

    Article  Google Scholar 

  43. Abahri K, Belarbi R, Trabelsi A (2011) Contribution to analytical and numerical study of combined heat and moisture transfer in porous building materials. Build Environ 46:1354–1360

    Article  Google Scholar 

  44. Allam R, Nabil I, Belarbi R, El-Meligy M, Altahrany A (2018) Hygrothermal behavior for a clay brick wall. vol 54

  45. Gandia RM, Gomes FC, Corrêa AAR, Rodrigues MC, Mendes RF (2019) Physical, mechanical and thermal behavior of adobe stabilized with glass fiber reinforced polymer waste. Constr Build Mater 222:168–182

    Article  Google Scholar 

  46. Labat M, Magniont C, Oudhof N, Aubert J-E (2016) From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Build Environ 97:69–81

    Article  Google Scholar 

  47. El Fgaier F, Lafhaj Z, Brachelet F, Antczak E, Chapiseau C (2015) Thermal performance of unfired clay bricks used in construction in the north of France: case study. Case Stud Constr Mater 3:102–111

    Google Scholar 

  48. Maillard P, Aubert JE (2014) Effects of the anisotropy of extruded earth bricks on their hygrothermal properties. Constr Build Mater 63:56–61

    Article  Google Scholar 

  49. Barnaure M, Stéphanie B, Poullain P (2021) Earth buildings with local materials: assessing the variability of properties measured using non-destructive methods. Constr Build Mater

  50. Medjelekh D, Ulmet L, Dubois F (2017) Characterization of hygrothermal transfers in the unfired earth. Energy Procedia 139:487–492

    Article  Google Scholar 

  51. Janssen H (2019) A discussion of “Analysis of the water absorption test to assess the intrinsic permeability of earthen materials.” Constr Build Mater 215:1044–1046

    Article  Google Scholar 

  52. Fabbri A, Soudani L, McGregor F, Morel J-C (2019) Closure to the discussion of “Analysis of the water absorption test to assess the intrinsic permeability of earthen materials.” Constr Build Mater 216:362–364

    Article  Google Scholar 

  53. Fabbri A, Soudani L, McGregor F, Morel J-C (2019) Analysis of the water absorption test to assess the intrinsic permeability of earthen materials. Constr Build Mater 199:154–162

    Article  Google Scholar 

  54. Castagnède B, Aknine A, Brouard B, Tarnow V (2000) Effects of compression on the sound absorption of fibrous materials. Appl Acoust 61:173–182

    Article  Google Scholar 

  55. Ben Mansour M, Ogam E, Jelidi A, Cherif AS, Ben Jabrallah S (2017) Influence of compaction pressure on the mechanical and acoustic properties of compacted earth blocks: an inverse multi-parameter acoustic problem. Appl Acoust 125:128–135

    Article  Google Scholar 

  56. Tchiotsop J (2023) Experimental and numerical studies of the variability of hygrothermal properties effects on the coupled heat and moisture transfer through a cob wall: material and wall scales. PhD thesis, Nantes Université. unpublished thesis

  57. Laborel-Préneron A, Magniont C, Aubert J-E (2018) Hygrothermal properties of unfired earth bricks: effect of barley straw, hemp shiv and corn cob addition. Energy Build 178:265–278

    Article  Google Scholar 

  58. Timmermann EO (2003) Multilayer sorption parameters: BET or GAB values? Colloids Surf A Physicochem Eng Asp 220:235–260

    Article  Google Scholar 

  59. Goffart J (2013) Impact of the variability of weather data on a low energy house. Application of Sensitivity Analysis for Correlated Temporal Inputs

  60. May Tzuc O, Rodríguez Gamboa O, Aguilar Rosel R, Che Poot M, Edelman H, Jiménez Torres M, Bassam A (2021) Modeling of hygrothermal behavior for green facade’s concrete wall exposed to nordic climate using artificial intelligence and global sensitivity analysis. J Build Eng 33:101625

    Article  Google Scholar 

  61. Benkhaled M, Ouldboukhitine S-E, Bakkour A, Amziane S (2022) Sensitivity analysis of the parameters for assessing a hygrothermal transfer model HAM in bio-based hemp concrete material. International Communications in Heat and Mass Transfer 132:105884

    Article  Google Scholar 

Download references

Funding

The authors thank the Ecologic Transistion Agency (ADEME, France), the Pays de la Loire Region (France) and Palladio Foundation for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

the authors have participated equally in all stages of production of this material.

Corresponding author

Correspondence to Stéphanie Bonnet.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 Effect of the variability of properties on profiles

See Figs. 13, 14 and 15.

Fig. 13
figure 13

Variability of \(P_v\) profiles

Fig. 14
figure 14

CV of T profiles at wall mid-depth, for various seasons

Fig. 15
figure 15

CV of \(P_v\) profiles at wall mid-depth, for various seasons

Appendix 2 \(\mu\)-indexes

See Figs. 16.

Fig. 16
figure 16

\(\mu\)-indices of \(P_v\) profiles

Appendix 3 \(\sigma/\mu\)-indices

See Fig. 17.

Fig. 17
figure 17

\(\sigma /\mu ^*\)-indices of \(P_v\) profiles

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchiotsop, J., Bonnet, S., Kiessé, T.S. et al. Local and global sensitivity analysis of a coupled heat and moisture transfers model: effect of the variability of cob material properties. Heat Mass Transfer 60, 67–87 (2024). https://doi.org/10.1007/s00231-023-03409-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03409-0

Navigation