Skip to main content
Log in

Lattice Boltzmann method simulations of swelling of cuboid-shaped IPN hydrogel tablets with experimental validation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The swelling behavior of IPN hydrogel tablets in the shape of cuboid or rectangular parallelepiped tablets in contact with buffer solutions at different pH and temperature conditions were estimated by a three-dimensional multiple-relaxation-time lattice Boltzmann (LB) model. Adsorption isotherms were obtained experimentally for tablets of IPN hydrogel formulation immersed in buffer solution at 298.15 and 310.15 K at pH equal to 4.48, 7.25, and 8.225, and those of copolymer hydrogel formulation at 298.15 K at pH equal to 4.48, 7.25, and 8.225. A computational method based on an LB model is used to simulate the hydrogels swelling, employing dimensionless units of length and mass. The discretization error estimation of the computational simulations was calculated by the grid convergence index method. Excellent correlations were achieved between the computational data and experimental values of mass swelling percentage, achieving coefficients of determination equal to or higher than 0.993 for the finest grids. The equilibrium diffusion coefficient at low pH values is higher than at large pH values. The simulations allowed us to estimate the equilibrium diffusion coefficient for each case; a qualitative property of the polymer, and to observe how the inner regions of a sample are hydrated in the time domain, both of which cannot be done experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

Mass concentration of the liquid substance in the hydrogel network, [-]

C eq :

Mass concentration of the liquid substance in thermodynamic equilibrium, [-]

D :

Effective diffusion coefficient for Fick’s equation, [m2 s–1]

D ( ) :

Diffusion coefficient in a specific direction, [m2 s–1]

D eq :

Equilibrium diffusion coefficient, [m2 s–1]

D eq * :

Extrapolated equilibrium diffusion coefficient, [m2 s–1]

E A :

Activation energy of diffusion, [kJ mol–1]

e a :

Approximate relative error, [-]

e ext :

Extrapolated relative error, [-]

e α :

The discrete velocity set in lattice Boltzmann equation, [m2 s–1]

GCI:

Grid convergence index, [-]

g α :

Distribution function, [-]

\({g}_{\alpha}^{eq}\) :

Equilibrium distribution function, [-]

H :

Height, [mm]

h :

The representative cell size

k :

Constant which incorporates characteristics of this network, [-]

L :

Length [mm]

M:

Transformation matrix in lattice Boltzmann equation, [-]

M :

Mass of the liquid substance in the hydrogel sample at time “t”, [g]

M dry :

Dry hydrogel sample mass or xerogel mass, [g]

M eq :

Total mass of swollen hydrogel sample in thermodynamic equilibrium, [g]

M total :

Total mass of swollen hydrogel sample at time “t”, [g]

N :

Number of lattice elements used for the computation, [-]

n :

Diffusion exponent, [-]

N x :

Number of lattice elements along the x axis, [-]

N y :

Number of lattice elements along the y axis, [-]

N z :

Number of lattice elements along the z axis, [-]

p :

Apparent order of the method, [-]

R :

Gas constant, [J⋅K−1⋅mol−1]

R 2 :

Coefficient of determination, [-]

RMSE :

Root mean square error, [-]

r :

Grid refinement factor, [-]

S:

The relaxation-time matrix, [-]

T :

Temperature, [K]

t :

Time, [s]

W :

Width, [mm]

w α :

Weight coefficient, [-]

β :

Dimensionless constants in Eq. (4), [-]

ε :

Sound speed factor linked to the lattice dimensions, [-]

ε 21, ε 32 :

Changes between medium-fine and coarse-medium input, [m2 s–1]

τ ij :

Relaxation coefficient, [-]

References

  1. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater 18:1345–1360. https://doi.org/10.1002/adma.200501612

    Article  Google Scholar 

  2. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer Hydrogels: A Review. Polym Plast Technol Eng 50:1475–1486. https://doi.org/10.1080/03602559.2011.593082

    Article  Google Scholar 

  3. Pinzón N, Espinosa A, Perilla J, Katime I (2002) A model for swelling and solute diffusion in water soluble polymers. Rev Colomb Ciencias Químico-Farmacéuticas 31:43–50

    Google Scholar 

  4. Peñaranda AJE, Sabino MA (2010) Effect of the presence of lignin or peat in IPN hydrogels on the sorption of heavy metals. Polym Bull 65:495–508. https://doi.org/10.1007/s00289-010-0264-3

    Article  Google Scholar 

  5. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35. https://doi.org/10.1016/0169-409X(93)90025-Y

    Article  Google Scholar 

  6. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  Google Scholar 

  7. Boschetti PJ, Pelliccioni O, Sabino MA, Vera N, Pappaterra MF (2020) Lattice Boltzmann simulation of swelling behavior of cylindrical IPN hydrogel tablets. Fluid Phase Equilib 508:112449. https://doi.org/10.1016/j.fluid.2019.112449

    Article  Google Scholar 

  8. El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013:38. https://doi.org/10.5339/gcsp.2013.38

    Article  Google Scholar 

  9. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review Chem Eng J 243:572–590. https://doi.org/10.1016/j.cej.2014.01.065

    Article  Google Scholar 

  10. Harris IR, Harmon AM, Brown LJ, Gosiewska A (2011) Tissue-engineering Scaffolds Containing Self-assembled-peptide Hydrogels. In: United States Patent, No. US8039258B2

  11. Boschetti PJ, Pelliccioni O, Da Costa K, Sabino MA (2020) Lattice Boltzmann simulation of swelling of an implant for microtia manufactured with IPN hydrogel. Comput Methods Biomech Biomed Engin 23:491–499. https://doi.org/10.1080/10255842.2020.1740210

    Article  Google Scholar 

  12. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  Google Scholar 

  13. Siepmann J, Siepmann F (2008) Mathematical modeling of drug delivery. Int J Pharm 364:328–343. https://doi.org/10.1016/j.ijpharm.2008.09.004

    Article  MATH  Google Scholar 

  14. Siepmann J, Podual K, Sriwongjanya M, Peppas NA, Bodmeier R (1999) A New Model Describing the Swelling and Drug Release Kinetics from Hydroxypropyl Methylcellulose Tablets. J Pharm Sci 88:65–72. https://doi.org/10.1021/js9802291

    Article  Google Scholar 

  15. Caccavo, D, Cascone, S, Lamberti, G, Barba AA, Larsson A (2016) Swellable Hydrogel-based Systems for Controlled Drug Delivery, In: Sezer AD (ed) Smart Drug Delivery System, IntechOpen, pp 237–303. https://doi.org/10.5772/61792

  16. Caccavo D, Cascone S, Lamberti G, Barba AA (2015) Modeling the drug release from hydrogel-based matrices. Mol Pharm 12:474–483. https://doi.org/10.1021/mp500563n

    Article  Google Scholar 

  17. Galdi I, Lamberti G (2012) Drug release from matrix systems: analysis by finite element methods. Heat Mass Transf 48:519–528. https://doi.org/10.1007/s00231-011-0900-y

    Article  Google Scholar 

  18. Ali A, Ahmed S (2018) Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. J Agric Food Chem 66:6940–6967. https://doi.org/10.1021/acs.jafc.8b01052

    Article  Google Scholar 

  19. Pu J, Zhou J, Chen Y, Bai B (2017) Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery. Energy Fuels 31:13600–13609. https://doi.org/10.1021/acs.energyfuels.7b03202

    Article  Google Scholar 

  20. Schenk M, Viquerat AD, Seffen KA, Guest SD (2014) Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization. J Spacecr Rockets 51:762–778. https://doi.org/10.2514/1.A32598

    Article  Google Scholar 

  21. Blanco A, González G, Casanova E, Pirela M, Briceño A (2014) On the accuracy in the determination of diffusivity constants in hydrogels by numerical simulation. Revista de la Facultad de Ingenieria 29:89–101

    Google Scholar 

  22. Marquez R, Blanco A, Pirela M, González G, Briceño A (2016) Numerical modelling of swelling of spherical hydrogels by using the finite volume method. Acta Cient Venez 67:61–79

    Google Scholar 

  23. Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8:8194. https://doi.org/10.1039/c2sm25467k

    Article  Google Scholar 

  24. Blanco A, González G, Casanova E, Pirela ME, Briceño A (2013) Mathematical Modeling of Hydrogels Swelling Based on the Finite Element Method. Appl Math 04:161–170. https://doi.org/10.4236/am.2013.48A022

    Article  Google Scholar 

  25. Xu Y, Jia Y, Wang Z, Wang Z (2013) Mathematical Modeling and Finite Element Simulation of Slow Release of Drugs Using Hydrogels as Carriers with Various Drug Concentration Distributions. J Pharm Sci 102:1532–1543. https://doi.org/10.1002/jps.23497

    Article  Google Scholar 

  26. Sotoudeh S, Pourfallah G, Barati A, Davarnejad R, Farahani MA, Memar A (2010) Dynamical Modeling and Experimental Analysis on the Swelling Behavior of the sIPN Hydrogels. Ind Eng Chem Res 49:10111–10115. https://doi.org/10.1021/ie101062d

    Article  Google Scholar 

  27. Barati A, Sotoudeh S, Davarnejad R, Farahani MA (2011) Simulation and experimental analysis of an intelligent tissue for controlled drug delivery. Can J Chem Eng 89:1521–1527. https://doi.org/10.1002/cjce.20634

    Article  Google Scholar 

  28. Kang MK, Huang R (2010) A Variational Approach and Finite Element Implementation for Swelling of Polymeric Hydrogels Under Geometric Constraints. J Appl Mech 77:061004. https://doi.org/10.1115/1.4001715

    Article  Google Scholar 

  29. Bouklas N, Landis CM, Huang R (2015) A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. J Mech Phys Solids 79:21–43. https://doi.org/10.1016/j.jmps.2015.03.004

    Article  MathSciNet  MATH  Google Scholar 

  30. Hong W, Zhao X, Zhou J, Suo Z (2008) A theory of coupled diffusion and large deformation in polymeric gels. J Mech Phys Solids 56:1779–1793. https://doi.org/10.1016/j.jmps.2007.11.010

    Article  MATH  Google Scholar 

  31. Li M, Jin C, Zhou J (2013) Finite element implementation of poroelasticity theory for swelling dynamics of hydrogels. Theor Appl Mech Lett 3:054009. https://doi.org/10.1063/2.1305409

    Article  Google Scholar 

  32. Biot MA (1941) General Theory of Three-Dimensional Consolidation. J Appl Phys 12:155–164. https://doi.org/10.1063/1.1712886

    Article  MATH  Google Scholar 

  33. Yu C, Malakpoor K, Huyghe JM (2019) A mixed hybrid finite element framework for the simulation of swelling ionized hydrogels. Comput Mech 63:835–852. https://doi.org/10.1007/s00466-018-1625-2

    Article  MathSciNet  MATH  Google Scholar 

  34. Caccavo D, Lamberti G (2017) PoroViscoElastic model to describe hydrogels’ behavior. Mater Sci Eng C 76:102–113. https://doi.org/10.1016/j.msec.2017.02.155

    Article  Google Scholar 

  35. Bayat MR, Dolatabadi R, Baghani M (2020) Transient swelling response of pH-sensitive hydrogels: A monophasic constitutive model and numerical implementation. Int J Pharm 577:119030. https://doi.org/10.1016/j.ijpharm.2020.119030

    Article  Google Scholar 

  36. Fennell E, Kamphus J, Huyghe JM (2020) The Importance of the Mixing Energy in Ionized Superabsorbent Polymer Swelling Models. Polymers (Basel) 12:609. https://doi.org/10.3390/polym12030609

    Article  Google Scholar 

  37. Van Der Sman RGM (2014) Moisture transport in swelling media modelled with a Lattice Boltzmann scheme having a deforming lattice. J Food Eng 124:54–63. https://doi.org/10.1016/j.jfoodeng.2013.09.033

    Article  Google Scholar 

  38. Boschetti PJ, Pelliccioni O, Sabino MA, Vera N, Ontiveros A, Pappaterra MF (2020) Swelling Behavior of IPN and Copolymer Hydrogels by Lattice Boltzmann Method. In: AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia. https://doi.org/10.2514/6.2020-2234

  39. Sabino MA, Loaiza M, Dernowsek J, Rezende R, Da Silva J (2017) Techniques for manufacturing polymer scaffolds with potential applications in tissue engineering. Revista Latinoamericana de Metalurgia y Materiales 37:120–146

    Google Scholar 

  40. Guo Y, Yuan T, Xiao Z, Tang P, Xiao Y, Fan Y, Zhang X (2012) Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J Mater Sci - Mater Med 23:2267–2279. https://doi.org/10.1007/s10856-012-4684-5

    Article  Google Scholar 

  41. Dragan ES, Cocarta AI (2016) Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs. ACS Appl Mater Interfaces 8:12018–12030. https://doi.org/10.1021/acsami.6b02264

    Article  Google Scholar 

  42. Incropera FP, De Witt DP (1990) Fundamentals of Heat and Mass Transfer. Third. John Wiley & Sons, New York

    Google Scholar 

  43. Crank J (1975) The Mathematics of Diffusion, 2nd edn. Oxford University Press, Glasgow

    MATH  Google Scholar 

  44. Frisch HL (1980) Sorption and transport in glassy polymers-a review. Polym Eng Sci 20:2–13. https://doi.org/10.1002/pen.760200103

    Article  Google Scholar 

  45. Korsmeyer RW, Lustig SR, Peppas NA (1986) Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling. J Polym Sci Part B Polym Phys 24:395–408. https://doi.org/10.1002/polb.1986.090240214

    Article  Google Scholar 

  46. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical Description of Hydrogel Swelling: A Review. Iran Polym J 19:375–398

    Google Scholar 

  47. Frisch HL, Stern SA (1983) Diffusion of small molecules in polymers. Crit Rev Solid State Mater Sci 11:123–187. https://doi.org/10.1080/01611598308244062

    Article  Google Scholar 

  48. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36. https://doi.org/10.1016/0168-3659(87)90034-4

    Article  Google Scholar 

  49. Bajpai AK, Bajpai J, Shukla S (2002) Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains. React Funct Polym 50:9–21. https://doi.org/10.1016/S1381-5148(01)00085-2

    Article  Google Scholar 

  50. Wang J, Wu W, Lin Z (2008) Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. J Appl Polym Sci 109:3018–3023. https://doi.org/10.1002/app.28403

    Article  Google Scholar 

  51. Sam Saguy I, Marabi A, Wallach R (2005) New approach to model rehydration of dry food particulates utilizing principles of liquid transport in porous media. Trends Food Sci Technol 16:495–506. https://doi.org/10.1016/j.tifs.2005.07.006

    Article  Google Scholar 

  52. Pérez-Mohedano R, Letzelter N, Bakalis S (2016) Swelling and hydration studies on egg yolk samples via scanning fluid dynamic gauge and gravimetric tests. J Food Eng 169:101–113. https://doi.org/10.1016/j.jfoodeng.2015.08.014

    Article  Google Scholar 

  53. Peppas N (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  Google Scholar 

  54. Fujita H (1961) Diffusion in polymer-diluent systems. Fortschritte der Hochpolym 3:1–47. https://doi.org/10.1007/BF02189382

    Article  Google Scholar 

  55. Chester SA, Di Leo CV, Anand L (2015) A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels. Int J Solids Struct 52:1–18. https://doi.org/10.1016/j.ijsolstr.2014.08.015

    Article  Google Scholar 

  56. Caccavo D, Cascone S, Lamberti G, Barba AA (2018) Hydrogels: Experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chem Soc Rev 47:2357–2373. https://doi.org/10.1039/c7cs00638a

    Article  Google Scholar 

  57. Yoshida H, Nagaoka M (2010) Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J Comput Phys 229:7774–7795. https://doi.org/10.1016/j.jcp.2010.06.037

    Article  MathSciNet  MATH  Google Scholar 

  58. Li L, Mei R, Klausner JF (2013) Boundary conditions for thermal lattice Boltzmann equation method. J Comput Phys 237:366–395. https://doi.org/10.1016/j.jcp.2012.11.027

    Article  MathSciNet  MATH  Google Scholar 

  59. Hossain MS, Chen XB, Bergstrom DJ (2015) Fluid flow and mass transfer over circular strands using the lattice Boltzmann method. Heat Mass Transf 51:1493–1504. https://doi.org/10.1007/s00231-015-1514-6

    Article  Google Scholar 

  60. Mehrer H (2007) Diffusion in Solids. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  61. Caccavo D, Vietri A, Lamberti G, Barba AA, Larsson A (2018) Modeling the mechanics and the transport phenomena in hydrogels. In: Computer Aided Chemical Engineering, 1st ed. Elsevier B.V., Amsterdam, Netherlands, pp 357–383. https://doi.org/10.1016/B978-0-444-63964-6.00012-X

  62. Mohamad AA (2011) Lattice Boltzmann Method. Springer, London, London

    Book  Google Scholar 

  63. Roache PJ (1994) Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J Fluids Eng 116:405. https://doi.org/10.1115/1.2910291

    Article  Google Scholar 

  64. Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J Fluids Eng 130:078001. https://doi.org/10.1115/1.29609533

    Article  Google Scholar 

  65. Roache PJ (2002) Quantification of Uncertainty in Computational Fluid Dynamics. Annu Rev Fluid Mech 29:123–160. https://doi.org/10.1146/annurev.fluid.29.1.123

    Article  MathSciNet  Google Scholar 

  66. Ali MSM, Doolan CJ, Wheatley V (2009) Grid Convergence Study for a Two-Dimensional Simulation of Flow Around a Square Cylinder At a Low Reynolds Number. Seventh Int Conderence CFD Miner Process Ind CSIRO 1–6

  67. Islam H, Guedes Soares C (2019) Uncertainty analysis in ship resistance prediction using OpenFOAM. Ocean Eng 191:105805. https://doi.org/10.1016/j.oceaneng.2019.02.033

    Article  Google Scholar 

  68. Oberkampf WL, Trucano TG (2002) Verification and validation in computational fluid dynamics. Prog Aerosp Sci 38:209–272. https://doi.org/10.1016/S0376-0421(02)00005-2

    Article  Google Scholar 

  69. Aeschliman DP, Oberkampf WL (1998) Experimental Methodology for Computational Fluid Dynamics Code Validation. AIAA J 36:733–741. https://doi.org/10.2514/2.461

    Article  Google Scholar 

Download references

Acknowledgements

The facilities and support of B5IDA Group (GID-60 B5IDA-USB) and Biomechanics Group (GID-50), all of them at Simon Bolivar University in Caracas, Venezuela, were very useful to complete this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Boschetti.

Ethics declarations

Conflicts of interest/Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boschetti, P.J., Toro, D.J., Ontiveros, A. et al. Lattice Boltzmann method simulations of swelling of cuboid-shaped IPN hydrogel tablets with experimental validation. Heat Mass Transfer 58, 763–777 (2022). https://doi.org/10.1007/s00231-021-03132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03132-8

Keywords

Navigation