Skip to main content
Log in

Heat transfer characteristics of plate heat exchanger using hybrid nanofluids: effect of nanoparticle mixture ratio

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Energetic and exergetic analyses of the plate heat exchanger are experimentally performed using Al2O3–TiO2 hybrid nanofluid as a coolant for sub-ambient temperature application to study the effect of nanoparticle volume ratio at various nanofluid flow rates ranging 2.0–4.0 lpm and inlet temperatures ranging 10–25 °C. The Al2O3–TiO2 hybrid nanofluids of 0.1% total volume concentration with different Al2O3–TiO2 ratios (5:0, 4:1, 3:2, 2:3, 1:4 and 0:5) are used as a coolant. Effects of nanoparticle mixture ratio, flow rate and inlet temperature on the heat transfer rate, heat transfer coefficient, pump work, performance index, and second law efficiency are investigated. Correlations are proposed to predict the Nusselt number for DI water as well as hybrid nanofluid. A maximum enhancement of around 16.91% and 4.5% are observed for convective heat transfer coefficient and heat transfer rate with Al2O3 (5:0) hybrid nanofluid along with 0.013% enhancement (insignificant) in the pump work for TiO2 (0:5) hybrid nanofluid. The maximum reduction in exergetic efficiency of 4.01% is observed for TiO2 (0:5) hybrid nanofluid. The study shows that the energetic and exergetic performances decrease continuously with the increase of the TiO2 ratio in the mixture, yielding no optimum nanoparticle mixture ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A:

Effective area of heat transfer, m2.

cp :

Specific heat, J/kg. K.

D:

Diameter, m.

Dh :

Hydraulic diameter, m.

E:

Exergy rate, W.

G:

Mass velocity, kg/s.m2.

k:

Thermal conductivity, W/m.K.

m:

Mass, kg.

ṁ:

Mass flow rate, kg/s.

Nu:

Nusselt number.

P:

Pump work, W.

p:

Pressure, Pa.

Pr:

Prandtl number.

Q:

Heat transfer rate, W.

Re:

Reynolds number.

t:

Thickness of the plate, mm.

T:

Temperature, °C.

U:

Overall heat transfer coefficient, W/m2K.

V:

Volume, m3.

w:

Weight, N.

X:

Uncertainty, %.

AA:

Acetic acid

Al2O3 :

Alumina nanoparticle

CTAB:

Cetyl trimethyl ammonium bromide

CuO:

Copper oxide nanoparticle

DI:

De-ionized water

IEP:

Iso-electric point

MWCNT:

Multiwalled carbon nanotube

OA:

Oleic acid

PHE:

Plate heat exchanger

PI:

Performance index

SEM:

Scanning Electron Microscopy

SDS:

Sodium dodecyl sulfate

SiO2 :

Silica nanoparticle

TiO2 :

Titania nanoparticle

v%:

Percentage volume concentration

wt.%:

Percentage weight concentration

x:

Uncertainty

α:

Heat transfer coefficient, W/m2K

∆p:

Pressure drop, Pa

μ:

Dynamic viscosity, Pa.s

ρ:

Density, kg/m3

Φ:

Volume concentration

η:

Efficiency, %

1:

First

2:

Second

II:

Second law

av:

Average

c:

cold

e:

Ambient

h:

Hot

i:

Inlet

nf:

Nanofluid

np:

Nanoparticle

o:

Outlet

w:

Wall

References

  1. Abou Elmaaty TM, Kabeel AE, Mahgoub M (2017) Corrugated plate heat exchanger review. Renew Sust Energ Rev 70:852–860

    Article  Google Scholar 

  2. Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids : recent research, development and applications. Renew Sust Energ Rev 43:164–177

    Article  Google Scholar 

  3. Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z (2018) Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Prod 190:169–192

    Article  Google Scholar 

  4. Sundar LS, Sharma KV, Singh MK, Sousa ACM (2017) Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – a review. Renew Sust Energ Rev 68:185–198

    Article  Google Scholar 

  5. Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, Rossi DD (2015) Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol 26:935–946

    Article  Google Scholar 

  6. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA (2017) Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci 134:85–97

    Article  Google Scholar 

  7. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ (2017) Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng 72:104–115

    Article  Google Scholar 

  8. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ (2020) Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J Therm Anal Calorim 139:2321–2336

  9. Sidik NAC, Jamil MM, Aziz-Japar WMA, Adamu IM (2017) A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sust Energ Rev 80:1112–1122

    Article  Google Scholar 

  10. Sridhara V, Satapathy LN (2011) Al2O3-based nanofluids: a review. Nanoscale Res Lett 6:456

    Article  Google Scholar 

  11. Yang L, Du K (2017) A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int J Heat Mass Transf 108:11–31

    Article  Google Scholar 

  12. Qi C, Wan YL, Wang GQ, Han DT (2018) Study on stabilities, thermophysical properties and natural convective heat transfer characteristics of TiO2-water nanofluids. Indian J Phys 92(4):461–478

    Article  Google Scholar 

  13. Alkasmoul FS, Al-Asadi MT, Myers TG, Thompson HM, Wilson MCT (2018) A practical evaluation of the performance of Al2O3-water, TiO2-water and CuO-water nanofluids for convective cooling. Int J Heat Mass Transf 126:639–651

    Article  Google Scholar 

  14. Maddah H, Aghayari R, Mirzaee M, Hossein M (2018) Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. Int. Commun. Heat Mass Transf. 97:92–102

    Article  Google Scholar 

  15. Das PK, Mallik AK, Ganguly R, Santra AK (2016) Synthesis and characterization of TiO2-water nanofluids with different surfactants. Int. Commun. Heat Mass Transf. 75:341–348

    Article  Google Scholar 

  16. Pandey SD, Nema VK (2012) Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp Thermal Fluid Sci 38:248–256

    Article  Google Scholar 

  17. Javadi FS, Sadeghipour S, Saidur R, BoroumandJazi G, Rahmati B, Elias MM, Sohel MR (2013) The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. Int. Commun. Heat Mass Transf. 44:58–63

    Article  Google Scholar 

  18. Tiwari AK, Ghosh P, Sarkar J (2013) Performance comparison of the plate heat exchanger using different nanofluids. Exp Thermal Fluid Sci 49:141–151

    Article  Google Scholar 

  19. Tiwari AK, Ghosh P, Sarkar J (2015) Particle concentration levels of various nanofluids in plate heat exchanger for best performance. Int J Heat Mass Transf 89:1110–1118

    Article  Google Scholar 

  20. Barzegarian R, Moraveji MK, Aloueyan A (2016) Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2-water nanofluid. Exp Thermal Fluid Sci 74:11–18

    Article  Google Scholar 

  21. Tabari ZT, Heris SZ, Moradi M, Kahani M (2016) The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renew Sust Energ Rev 58:1318–1326

    Article  Google Scholar 

  22. Huang D, Wu Z, Sunden B (2016) Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Thermal Fluid Sci 72:190–196

    Article  Google Scholar 

  23. Bhattad A, Sarkar J, Ghosh P (2020) Hydrothermal performance of different alumina hybrid nanofluid types in plate heat exchanger. J Therm Anal Calorim 139:3777–3787

  24. Hamid KA, Azmi WH, Nabil MF, Mamat R, Sharma KV (2018) Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2nanofluids. Int J Heat Mass Transf 116:1143–1152

    Article  Google Scholar 

  25. Charab AA, Movahedirad S, Norouzbeigi R (2017) Thermal conductivity of Al2O3+TiO2/water nanofluid: model development and experimental validation. Appl Therm Eng 119:42–51

    Article  Google Scholar 

  26. Hamid KA, Azmi WH, Nabil MF, Mamat R (2018) Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow. Int J Heat Mass Transf 118:617–627

    Article  Google Scholar 

  27. Zawawi NNM, Azmi WH, Sharif MZ, Najafi G (2019) Experimental investigation on stability and thermo-physical properties of Al2O3–SiO2/PAG nanolubricants with different nanoparticle ratios. J Therm Anal Calorim 135:1243–1255

  28. Nimmagadda R, Venkatasubbaiah K (2015) Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3+Ag/water). Eur J Mech B/Fluids 52:19–27

    Article  MathSciNet  Google Scholar 

  29. Bhattad A, Sarkar J, Ghosh P (2019) Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid. Appl Therm Eng 162:114309

    Article  Google Scholar 

  30. Bhattad A, Sarkar J, Ghosh P (2018) Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int Commun Heat Mass Transf 91:262–273

    Article  Google Scholar 

  31. Bhattad A, Sarkar J, Ghosh P (2020) Energetic and exergetic performances of plate heat exchanger using brine based hybrid nanofluid for milk chilling application. Heat Transfer Eng 41:522–535

  32. Stogiannis IA, Mouza AA, Paras SV (2015) Efficacy of SiO2 nanofluids in a miniature plate heat exchanger with undulated surface. Int J Therm Sci 92:230–238

    Article  Google Scholar 

  33. Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV (2009) Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow 30:691–699

    Article  Google Scholar 

  34. Huang D, Wu Z, Sunden B (2015) Pressure drop and convective heat transfer of Al2O3/waterand MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Transf 89:620–626

    Article  Google Scholar 

  35. Kakac S, Liu H (2002) Heat exchangers: selection, rating and thermal design, 2nd ed. CRC Press LLC, Florida, USA

  36. Bhattad A, Sarkar J, Ghosh P (2018) Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sust Energ Rev 82:3656–3669

    Article  Google Scholar 

  37. Ghalambaz M, Chamkha AJ, Wen D (2019) Natural convective flow and heat transfer of Nano-encapsulated phase change materials (NEPCMs) in a cavity. Int J Heat Mass Transf 138:738–749

    Article  Google Scholar 

  38. Ghalambaz M, Groşan T, Pop I (2019) Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. J Mol Liq 293:111432

    Article  Google Scholar 

  39. Hajjar A, Mehryan SAM, Ghalambaz M (2020) Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension. Int J Mech Sci 166:105243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahar Sarkar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattad, A., Sarkar, J. & Ghosh, P. Heat transfer characteristics of plate heat exchanger using hybrid nanofluids: effect of nanoparticle mixture ratio. Heat Mass Transfer 56, 2457–2472 (2020). https://doi.org/10.1007/s00231-020-02877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02877-y

Keywords

Navigation