Skip to main content
Log in

Effect of hydraulic diameter on flow boiling in rectangular microchannels

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental study is conducted to investigate the effect of hydraulic diameter on the saturated flow boiling characteristics of deionized water in parallel rectangular microchannels. Experiments have been performed for the mass fluxes of 51, 65, 78 and 93 kg m−2 s−1, and the hydraulic diameters of 100, 150, 200 and 250 μm. The wall heat flux ranges from 35.9 to 105.6 kW m−2. To eliminate the effect of aspect ratio and to address clearly the effect of hydraulic diameter, all the channels are designed with square cross section. Flow visualization studies are performed for a better understanding of the underlying physical phenomena. Effects of heat flux, mass flux and vapor quality on the heat transfer and total pressure drop have been investigated, too. It is concluded that hydraulic diameter has significant influence on both of the local two phase heat transfer coefficient and the total pressure drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

D h :

Hydraulic diameter [m]

h tp :

Two phase heat transfer coefficient [kW m−2 K−1]

H ch :

Channel height (depth) [m]

G :

Mass flux [kg m−2 s−1]

q w :

Wall heat flux [kW m−2]

q eff :

Effective heat flux [kW m−2]

\( \dot{q} \) :

Heat transfer rate applied from power supply to the test section [W]

W ch :

Channel width [m]

x e :

Vapor quality, Thermodynamic equilibrium quality

x eo :

Exit vapor quality

ΔP tot :

Total pressure drop [Pa]

ΔT sat :

Wall superheat temperature [K]

References

  1. Aydin O, Avci M, Markal B, Yazici MY (2014) An experimental study on the decaying swirl flow in a tube. Int Commun Heat Mass Transfer 55:22–28. https://doi.org/10.1016/j.icheatmasstransfer.2014.04.012

    Article  Google Scholar 

  2. Markal B, Aydın O, Avcı M (2012) Exergy analysis of a counter-flow Ranque-Hilsch vortex tube having different helical vortex generators. Int J Exergy 10:228–238. https://doi.org/10.1504/IJEX.2012.045867

    Article  Google Scholar 

  3. Spinato G, Borhani N, Thome JR (2016) Operational regimes in a closed loop pulsating heat pipe. Int J Therm Sci 102:78–88. https://doi.org/10.1016/j.ijthermalsci.2015.11.006

    Article  Google Scholar 

  4. Law M, Lee PS, Balasubramanian K (2014) Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels. Int J Heat Mass Transf 76:419–431. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.045

    Article  Google Scholar 

  5. Wang Y, Wang ZG (2014) An overview of liquid-vapor phase change, flow and heat transfer in mini and micro-channels. Int J Therm Sci 86:227–245. https://doi.org/10.1016/j.ijthermalsci.2014.07.005

    Article  Google Scholar 

  6. Kim SM, Mudawar I (2014) Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows. Int J Heat Mass Transf 77:627–652. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.035

    Article  Google Scholar 

  7. Wang Y, Peles Y (2015) Subcooled flow boiling in a microchannel with a pin fin and a liquid jet in crossflow. Int J Heat Mass Transf 86:165–173. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.080

    Article  Google Scholar 

  8. Kalani A, Kandlikar SG (2015) Effect of taper on pressure recovery during flow boiling in open microchannels with manifold using homogeneous flow model. Int J Heat Mass Transf 83:109–117. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.080

    Article  Google Scholar 

  9. Liu TL, Pan C (2016) Infrared thermography measurement of two-phase boiling flow heat transfer in a microchannel. Appl Therm Eng 94:568–578. https://doi.org/10.1016/j.applthermaleng.2015.10.084

    Article  Google Scholar 

  10. Yang F, Li W, Dai X, Li C (2016) Flow boiling heat transfer of HFE-7000 in nanowire-coated microchannels. Appl Therm Eng 93:260–268. https://doi.org/10.1016/j.applthermaleng.2015.09.097

    Article  Google Scholar 

  11. Ferret C, Falka L, D’Ortona U, Chenua A, Veenstra TT (2004) Introduction of image analysis for the quantification of the boiling flow heat transfer. Chem Eng J 101:357–365. https://doi.org/10.1016/j.cej.2003.10.028

    Article  Google Scholar 

  12. Zhang P, Jia HW (2016) Evolution of flow patterns and the associated heat and mass transfer characteristics during flow boiling in mini−/micro-channels. Chem Eng J 306:978–991. https://doi.org/10.1016/j.cej.2016.08.034

    Article  Google Scholar 

  13. Markal B, Aydin O, Avci M (2016) Effect of aspect ratio on saturated flow boiling in microchannels. Int J Heat Mass Transf 93:130–143. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.024

    Article  Google Scholar 

  14. Markal B, Aydin O, Avci M (2016) An experimental investigation of saturated flow boiling heat transfer and pressure drop in square microchannels. Int J Refrig 65:1–11. https://doi.org/10.1016/j.ijrefrig.2015.12.013

    Article  Google Scholar 

  15. Harirchian T, Garimella SV (2008) Microchannel size effects on local flow boiling heat transfer to a dielectric fluid. Int J Heat Mass Transf 51:3724–3735. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.013

    Article  MATH  Google Scholar 

  16. Harirchian T, Garimella SV (2009) Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels. Int J Multiphase Flow 35:349–362. https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.003

    Article  Google Scholar 

  17. Harirchian T, Garimella SV (2009) The critical role of channel cross-sectional area in microchannel flow boiling heat transfer. Int J Multiphase Flow 35:904–913. https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.005

    Article  Google Scholar 

  18. Lee J, Mudawar I (2008) Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results. Int J Heat Mass Transf 51:4315–4326. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.012

    Article  MATH  Google Scholar 

  19. Wang Y, Sefiane K (2012) Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro channels using transparent heating. Int J Heat Mass Transf 55:2235–2243. https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.044

    Article  Google Scholar 

  20. Wang Y, Sefiane K, Wang ZG, Harmand S (2014) Analysis of two-phase pressure drop fluctuations during micro-channel flow boiling. Int J Heat Mass Transf 70:353–362. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.012

    Article  Google Scholar 

  21. Deng D, Chen R, He H, Feng J, Tang Y, Zhou W (2015) Effects of heat flux, mass flux and channel size on flow boiling performance of reentrant porous microchannels. Exp Thermal Fluid Sci 64:13–22. https://doi.org/10.1016/j.expthermflusci.2015.01.015

    Article  Google Scholar 

  22. Deng D, Huang Q, Wan W, Zhou W, Lian Y (2016) Experimental study on flow boiling pressure drop and flow instabilities of reentrant microchannels. Exp Heat Transfer 29:811–832. https://doi.org/10.1080/08916152.2016.1161677

    Article  Google Scholar 

  23. Sempértegui-Tapia DF, Ribatski G (2017) The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels. Exp Thermal Fluid Sci 89:98–109. https://doi.org/10.1016/j.expthermflusci.2017.08.001

    Article  Google Scholar 

  24. Zeng J, Zhang S, Tang Y, Sun Y, Yuan W (2017) Flow boiling characteristics of micro-grooved channels with reentrant cavity array at different operational conditions. Int J Heat Mass Transf 114:1001–1012. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.128

    Article  Google Scholar 

  25. Hong S, Tang Y, Lai Y, Wang S (2017) An experimental investigation on effect of channel configuration in ultra-shallow micro multi-channels flow boiling: Heat transfer enhancement and visualized presentation. Exp Thermal Fluid Sci 83:239–247. https://doi.org/10.1016/j.expthermflusci.2017.01.011

    Article  Google Scholar 

  26. Fu B, Lee C, Pan C (2013) The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink. Int J Heat Mass Transf 58:53–61. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.050

    Article  Google Scholar 

  27. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  28. Qu W, Mudawar I (2004) Transport phenomena in two-phase micro-channel heat sinks. J Electron Packag 126:213–224

    Article  Google Scholar 

  29. Galvis E, Culham R (2012) Measurements and flow pattern visualizations of two-phase flow boiling in single channel microevaporators. Int J Multiphase Flow 42:52–61. https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.009

    Article  Google Scholar 

  30. Deng D, Wan W, Shao H, Tang Y, Feng J, Zeng J (2015) Effects of operation parameters on flow boiling characteristics of heat sink cooling systems with reentrant porous microchannels. Energy Convers Manag 96:340–351. https://doi.org/10.1016/j.enconman.2015.02.072

    Article  Google Scholar 

  31. Liu D, Garimella SV (2007) Flow boiling heat transfer in microchannels. J Heat Transf 129:1321–1332

    Article  Google Scholar 

  32. Chen T, Garimella SV (2011) Local heat transfer distribution and effect of instabilities during flow boiling in a silicon microchannel heat sink. Int J Heat Mass Transf 54:3179–3190. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.012

    Article  Google Scholar 

  33. Tibiriçá CB, Czelusniak LE, Ribatski G (2015) Critical heat flux in a 0.38 mm microchannel and actions for suppression of flow boiling instabilities. Exp Thermal Fluid Sci 67:48–56. https://doi.org/10.1016/j.expthermflusci.2015.02.020

    Article  Google Scholar 

  34. Tibiriçá CB, Ribatski G (2014) Flow patterns and bubble departure fundamental characteristics during flow boiling in microscale channels. Exp Thermal Fluid Sci 59:152–165. https://doi.org/10.1016/j.expthermflusci.2014.02.017

    Article  Google Scholar 

  35. Kandlikar SG (2004) Heat transfer mechanisms during flow boiling in microchannels. J Heat Transf 126:8–16

    Article  Google Scholar 

  36. Kandlikar SG (2010) Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective. Int J Therm Sci 49:1073–1085. https://doi.org/10.1016/j.ijthermalsci.2009.12.016

    Article  Google Scholar 

  37. Lee HJ, Liu DY, Yao SC (2010) Flow instability of evaporative micro-channels. Int J Heat Mass Transf 53:1740–1749. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.016

    Article  MATH  Google Scholar 

  38. Markal B, Aydin O, Avci M (2017) Prediction of heat transfer coefficient in saturated flow boiling heat transfer in parallel rectangular microchannel heat sinks: An experimental study. Heat Transf Eng 38:1415–1428. https://doi.org/10.1080/01457632.2016.1255038

    Article  Google Scholar 

  39. Markal B, Aydin O, Avci M (2017) Prediction of pressure drop for flow boiling in rectangular multi-microchannel heat sinks. Heat Transfer Eng. https://doi.org/10.1080/01457632.2017.1404552

Download references

Acknowledgements

This study is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with the project number 113 M408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Aydin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markal, B., Aydin, O. & Avci, M. Effect of hydraulic diameter on flow boiling in rectangular microchannels. Heat Mass Transfer 55, 1033–1044 (2019). https://doi.org/10.1007/s00231-018-2482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2482-4

Keywords

Navigation