Skip to main content
Log in

New axial dispersion model for heat exchanger design

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The special case of unity dispersive Mach number of the hyperbolic axial dispersion model is investigated as the more realistic and simpler alternative to the parabolic model with zero Mach number. Simple corrections to the mean temperature difference or to the heat transfer coefficients are derived as functions of the dispersive Peclet numbers. As an example the model is applied to a cascade of stirred tanks in overall counterflow arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Area for heat transfer (m2)

A c :

Cross-sectional area (m2)

B :

n × n matrix

b ij :

Elements of matrix B

C :

Propagation velocity (m s−1)

c p :

Specific isobaric heat capacity (J kg−1 K−1)

H :

Operator

k :

Overall heat transfer coefficient (W m−2 K−1)

k * :

Overall heat transfer coefficient (W m−2 K−1), Eq. 24a

L :

Length of heat exchanger (m)

l :

Space coordinate (m)

M :

Dispersive Mach number, M = |w|/C

NTU:

Number of transfer units, NTU = k A/(A c wρc p )

NTU* :

Number of transfer units, Eq. 24

NTUα :

Number of transfer units, NTUα = αA/(A c wρc p )

\( {\text{NTU}}_{\alpha }^{*} \) :

Number of transfer units, Eq. 27a

n :

Number of stirred tanks in series or number of fluid streams

P :

Dimensionless temperature change, \( P_{1} = {{\left( {T_{1}^{\prime } - T_{1}^{\prime \prime } } \right)} \mathord{\left/ {\vphantom {{\left( {T_{1}^{\prime } - T_{1}^{\prime \prime } } \right)} {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}} \) and \( P_{2} = {{\left( {T_{2}^{\prime \prime } - T_{2}^{\prime } } \right)} \mathord{\left/ {\vphantom {{\left( {T_{2}^{\prime \prime } - T_{2}^{\prime } } \right)} {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}} \)

Pe :

Dispersive Peclet number, Pe = w L ρ c p /λ *

\( \dot{Q} \) :

Heat transfer rate (W)

\( \dot{q}_{l} \) :

Heat flux (W m−2)

R w :

Wall resistance including fouling resistances (K W−1)

T :

Hypothetic temperature inside the heat exchanger and true fluid temperature outside the heat exchanger (K)

T :

Vector of fluid temperatures (K)

ΔT M :

Non-dispersive mean temperature difference (K)

t :

True fluid temperature inside the exchanger (K)

t :

Vector of temperatures (K)

Δt M :

Dispersive mean temperature difference (K)

W 1 :

Capacity of residing fluid in the core of the heat exchanger (J K−1)

W 2 :

Capacity of the core of the heat exchanger (J K−1)

\( \dot{W} \) :

Heat capacity rate (W K−1)

w :

Flow velocity (m s−1)

x :

Dimensionless space coordinate (x = l/L)

y :

Dimensionless space coordinate, perpendicular to x (cross-flow)

z :

Dimensionless time coordinate (z = τ w/L)

α :

Heat transfer coefficient (W m−2 K−1)

α * :

Heat transfer coefficient (W m−2 K−1), Eq. 27

λ * :

Dispersive thermal conductivity (W m−1 K−1)

φ :

Reduced axial dispersive heat flux (K)

ρ :

Density (kg m−3)

τ :

Time (s)

Θ:

Dimensionless mean temperature difference, \( \Uptheta_{\text{dispersive}} = {{\Updelta t_{\text{M}} } \mathord{\left/ {\vphantom {{\Updelta t_{\text{M}} } {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}} \) and \( \Uptheta_{\text{plug}} = {{\Updelta T_{\text{M}} } \mathord{\left/ {\vphantom {{\Updelta T_{\text{M}} } {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {T_{1}^{\prime } - T_{2}^{\prime } } \right)}} \)

c :

Cascade of stirred tanks

i :

Stirred tank

i, j :

Fluid stream i, j

plug :

Plug flow

w :

Wall

1:

Fluid 1

2:

Fluid 2

′:

Inlet

″:

Outlet

-:

Mean value

τ :

Transposition

References

  1. (2006) VDI-Wärmeatlas, 10. Auflage. Springer, Berlin

  2. (2010) Heat Atlas, 2nd edn. Springer, Berlin

  3. Hewitt GF, Shires GL, Bott TR (1994) Process heat transfer. CRC Press, Boca Raton

    Google Scholar 

  4. Das SK, Roetzel W (2004) The axial dispersion model for heat transfer equipment—a review. Int J Transp Phenom 6:23–49

    Google Scholar 

  5. Spang B (1991) Über das thermische Verhalten von Rohr-bündelwärmeübertragern mit Segmentumlenkblechen. VDI-Fortschrittsberichte, Reihe 19, Nr. 48, VDI-Verlag, Düsseldorf

  6. Xuan Y (1991) Thermische Modellierung mehrgängiger Rohrbündelwärmeübertrager mit Umlenkblechen und geteiltem Mantelstrom. VDI-Fortschrittsberichte, Reihe 19, Nr. 52, VDI-Verlag, Düsseldorf

  7. Luo X (1998) Das axiale Dispersionsmodell für Kreuzstrom-wärmeübertrager. VDI-Fortschrittsberichte, Reihe 19, Nr. 109, VDI-Verlag, Düsseldorf

  8. Roetzel W, Das SK (1995) Hyperbolic axial dispersion model: concept and its application to a plate heat exchanger. Int J Heat Mass Transf 38:3065–3076

    Article  Google Scholar 

  9. Roetzel W, Na Ranong C (2000) Axial dispersion models for heat exchangers. Int J Heat Technol 18:7–17

    MATH  Google Scholar 

  10. Sahoo RK, Roetzel W (2002) Hyperbolic axial dispersion model for heat exchangers. Int J Heat Mass Transf 45:1261–1270

    Article  MATH  Google Scholar 

  11. Na Ranong C, Höhne M, Franzen J, Hapke J, Fieg G, Dornheim M, Bellosta von Colbe M, Eigen N, Metz O (2009) Concept, design and manufacture of a prototype hydrogen storage tank based on sodium alanate. Chem Eng Technol 32(8):1154–1163

    Article  Google Scholar 

  12. Chester M (1963) Second sound in solids. Phys Rev 131:2013–2015

    Article  Google Scholar 

  13. Roetzel W, Spang B, Luo X, Das SK (1998) Propagation of the third sound wave in fluid: hypothesis and theoretical foundation. Int J Heat Mass Transf 41:2769–2780

    Article  MATH  Google Scholar 

  14. Roetzel W, Luo X (2010) Thermal design of multi-fluid mixed–mixed cross-flow heat exchangers. Heat Mass Transf 46(10):1077–1085

    Article  Google Scholar 

  15. Roetzel W, Na Ranong C (2003) On the application of the Wilson plot technique. Int J Heat Technol 21:125–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Roetzel.

Additional information

Dedicated to Prof. Dr.-Ing. Dr.-Ing. E.h. mult. Franz Mayinger on the occasion of his 80th birthday.

Appendices

Appendix 1: Mixed-unmixed cross-flow

Stream 1 mixed, stream 2 unmixed.

1.1 Individual solution for dispersion model

$$ P_{1} = 1 - \exp \left[ { - \left( {\frac{{{{\dot{W}_{1} } \mathord{\left/ {\vphantom {{\dot{W}_{1} } {\dot{W}_{2} }}} \right. \kern-\nulldelimiterspace} {\dot{W}_{2} }}}}{{1 - \exp \left( { - {{{\text{NTU}}_{2} } \mathord{\left/ {\vphantom {{{\text{NTU}}_{2} } {\left( {1 + \frac{{{\text{NTU}}_{2} }}{{Pe_{2} }}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + \frac{{{\text{NTU}}_{2} }}{{Pe_{2} }}} \right)}}} \right)}} + \frac{1}{{Pe_{1} }}} \right)^{ - 1} } \right] $$
(36)
$$ {{\dot{W}_{2} } \mathord{\left/ {\vphantom {{\dot{W}_{2} } {\dot{W}_{1} }}} \right. \kern-\nulldelimiterspace} {\dot{W}_{1} }} = {{{\text{NTU}}_{1} } \mathord{\left/ {\vphantom {{{\text{NTU}}_{1} } {{\text{NTU}}_{2} }}} \right. \kern-\nulldelimiterspace} {{\text{NTU}}_{2} }} $$

1.2 General approximation

$$ P_{1} = 1 - \exp \left\{ { - \frac{{\dot{W}_{2} }}{{\dot{W}_{1} }}\left[ {1 - \exp \left( { - {\text{NTU}}_{2}^{*} } \right)} \right]} \right\} $$
(37)

NTU *2 from Eq. 24

$$ {\text{NTU}}_{2}^{*} = \frac{{{\text{NTU}}_{2} }}{{1 + \frac{{{\text{NTU}}_{1} }}{{Pe_{1} }} + \frac{{{\text{NTU}}_{2} }}{{Pe_{2} }}}} $$
(24)

For Pe 1 = ∞ the Eqs. 36 and 37 become identical.

Appendix 2: Two-fluid mixed–mixed cross-flow

2.1 Individual solution for dispersion model

i = 1, 2.

$$ \begin{gathered} F_{i} = \frac{1}{{{\text{NTU}}_{i} }}\left( {1 - \exp \left[ { - \frac{{{\text{NTU}}_{i} }}{{1 + \frac{{{\text{NTU}}_{i} }}{{Pe_{i} }}}}} \right]} \right) \hfill \\ \bar{t}_{1} = \frac{{\frac{{T_{1}^{\prime } }}{{F_{2} }} + \frac{{T_{2}^{\prime } }}{{F_{1} }} - T_{2}^{\prime } }}{{\frac{1}{{F_{2} }} + \frac{1}{{F_{1} }} - 1}} \hfill \\ \bar{t}_{2} = \frac{{\frac{{T_{1}^{\prime } }}{{F_{2} }} + \frac{{T_{2}^{\prime } }}{{F_{1} }} - T_{1}^{\prime } }}{{\frac{1}{{F_{2} }} + \frac{1}{{F_{1} }} - 1}} \hfill \\ T_{1}^{\prime \prime } = T_{1}^{\prime } - {\text{NTU}}_{1} \left( {\bar{t}_{1} - \bar{t}_{2} } \right) \hfill \\ T_{2}^{\prime \prime } = T_{2}^{\prime } + {\text{NTU}}_{2} \left( {\bar{t}_{1} - \bar{t}_{2} } \right) \hfill \\ \end{gathered} $$
(38)

The true mean temperature can serve as reference temperature: \( \alpha_{i} = \alpha_{i} \left( {\bar{t}_{i} } \right) \).

2.2 General approximation

$$ \begin{gathered} F_{i} = \frac{1}{{{\text{NTU}}_{i}^{*} }}\left( {1 - \exp \left[ { - {\text{NTU}}_{i}^{*} } \right]} \right) \hfill \\ T_{1}^{\prime \prime } = T_{1}^{\prime } - {\text{NTU}}_{1}^{*} \left( {\bar{t}_{1} - \bar{t}_{2} } \right) \hfill \\ T_{2}^{\prime \prime } = T_{2}^{\prime } + {\text{NTU}}_{2}^{*} \left( {\bar{t}_{1} - \bar{t}_{2} } \right) \hfill \\ \end{gathered} $$
(39)

NTU* according to Eq. 24, \( \bar{t}_{1} \) and \( \bar{t}_{2} \) from Eq. 38. These temperatures are now only approximations of the true mean temperatures.

Appendix 3: Multi-fluid mixed–mixed cross-flow

3.1 Individual solution for dispersion model

Inlet temperature: \( {\mathbf{T}}^{\prime } = \left( {T_{1}^{\prime } ,T_{2}^{\prime } , \ldots ,T_{n}^{\prime } } \right)^{\tau } \)

True mean temperature: \( {\bar{\mathbf{t}}} = \left( {\bar{t}_{1} ,\bar{t}_{2} , \ldots ,\bar{t}_{n} } \right)^{\tau } \)

Using the n × n matrix \( {\mathbf{B}} = \left( {b_{ij} } \right) \),

$$ {\bar{\mathbf{t}}} = {\mathbf{B}}^{ - 1} \cdot {\mathbf{T}}^{\prime } . $$
(40)
$$ b_{ij} = \left\{ {\begin{array}{*{20}l} {\frac{{N_{i} }}{{1 - \exp \left( { - {{N_{i} } \mathord{\left/ {\vphantom {{N_{i} } {\left( {1 + \frac{{N_{i} }}{{Pe_{i} }}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + \frac{{N_{i} }}{{Pe_{i} }}} \right)}}} \right)}}} & {\left( {i = j} \right)} \\ {\frac{{\left( {Ak} \right)_{ij} }}{{\sum\nolimits_{\begin{subarray}{l} j^{\prime } = 1 \\ j^{\prime } \ne i \end{subarray} }^{n} {\left( {Ak} \right)_{{ij^{\prime } }} } }}\left[ {1 - \frac{{N_{i} }}{{1 - \exp \left( { - {{N_{i} } \mathord{\left/ {\vphantom {{N_{i} } {\left( {1 + \frac{{N_{i} }}{{Pe_{i} }}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + \frac{{N_{i} }}{{Pe_{i} }}} \right)}}} \right)}}} \right]} & {\left( {i \ne j} \right)} \\ \end{array} } \right. $$
(41)
$$ N_{i} = \frac{1}{{\dot{W}_{i} }}\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray} }^{n} {\left( {Ak} \right)_{ij} } $$
(42)
$$ T_{i}^{\prime \prime } = g_{i} T_{i}^{\prime } + \left( {1 - g_{i} } \right)\;\bar{t}_{i} $$
(43)
$$ g_{i} = \frac{{\left( {1 + N_{i} } \right)\exp \left( { - \frac{{N_{i} }}{{1 + {{N_{i} } \mathord{\left/ {\vphantom {{N_{i} } {Pe_{i} }}} \right. \kern-\nulldelimiterspace} {Pe_{i} }}}}} \right) - 1}}{{N_{i} + \exp \left( { - \frac{{N_{i} }}{{1 + {{N_{i} } \mathord{\left/ {\vphantom {{N_{i} } {Pe_{i} }}} \right. \kern-\nulldelimiterspace} {Pe_{i} }}}}} \right) - 1}} $$
(44)

Reference temperature \( \alpha_{i} = \alpha_{i} \left( {\bar{t}_{i} } \right) \)

3.2 General approximation

Equation 40 remains unchanged. Equations 41 and 42 are replaced by Eqs. 45 and 46

$$ b_{ij} = \left\{ {\begin{array}{*{20}l} {\frac{{N_{i}^{*} }}{{1 - \exp \left( { - N_{i}^{*} } \right)}}} & {\left( {i = j} \right)} \\ {\frac{{\left( {Ak^{*} } \right)_{ij} }}{{\sum\nolimits_{\begin{subarray}{l} j^{\prime } = 1 \\ j^{\prime } \ne i \end{subarray} }^{n} {\left( {Ak^{*} } \right)_{{ij^{\prime } }} } }}\left[ {1 - \frac{{N_{i}^{*} }}{{1 - \exp \left( { - N_{i}^{*} } \right)}}} \right]} & {\left( {i \ne j} \right)} \\ \end{array} } \right. $$
(45)
$$ N_{i}^{*} = \frac{1}{{\dot{W}_{i} }}\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray} }^{n} {\left( {Ak^{*} } \right)_{ij} } $$
(46)

with \( \alpha_{i}^{*} \) from Eq. 27.

Equation 44 is replaced by

$$ g_{i} = \frac{{\left( {1 + N_{i}^{*} } \right)\exp \left( { - N_{i}^{*} } \right) - 1}}{{N_{i}^{*} + \exp \left( { - N_{i}^{*} } \right) - 1}} . $$
(47)

For n = 2 the multi-fluid solution turns to the two-fluid solutions (Eqs. 38 and 39).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roetzel, W., Na Ranong, C. & Fieg, G. New axial dispersion model for heat exchanger design. Heat Mass Transfer 47, 1009–1017 (2011). https://doi.org/10.1007/s00231-011-0847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0847-z

Keywords

Navigation