Skip to main content
Log in

Large eddy simulation of a slot jet impinging on a convex surface

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A large eddy simulation is used to simulate flow and heat transfer in a turbulent plane jet with two distances from the jet-exit to impingement corresponding to twice and ten times the slot nozzle width. The resolved different unsteady vortex motions of the jet shear layers are studied and shown to have an important influence on heat transfer at the wall. They are used to explain existence of the second peak in Nusselt number for the case corresponding to twice the slot nozzle width. The predicted average surface Nusselt number profiles exhibit good agreement with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

C S :

Smagorinsky constant

d :

Distance closest to the wall

D :

Semi-cylindrical convex surface diameter

k :

Turbulent kinetic energy

L s :

Mixing length for subgrid scales

N :

Number of samples

Nu(s, t i ):

Local and instantaneous Nusselt number

q j :

Temperature flux in the xj direction

p :

Pressure

Re W :

Reynolds number

s :

Distance from the impingement point along the curved wall

S ij :

Strain rate tensor

t :

Time

\( \bar{T} \) :

Filtered temperature

u, v, w :

Velocity components

u′, v′, w′:

Fluctuating velocity components

\( \bar{u}_{i} \) :

Filtered x i -velocity component

u n :

Velocity resultant parallel to the wall

u τ :

Friction velocity

u + :

Nondimensional velocity \( u^{ + } = \overline{{u_{n} }} /u_{\tau } \)

\( \overline{w}_{in} \) :

Average inlet z-velocity

V :

Volume of the computational cell

W :

Slot nozzle width

x, y, z :

Cartesian coordinates

y n :

Distance normal to the wall

Y :

Distance from the slot exit to the point of impact on the wall

y + :

Nondimensional distance normal to the wall \( y^{ + } = \left( {\rho u_{\tau } y_{n} } \right)/\mu \)

\( \overline{{{\uptheta}}} \) :

Normalized mean temperature \( \overline{\theta } = (T - 291)/(313 - 291) \)

σ:

Laminar Prandtl number

σ ij :

Laminar stress tensor

σ t :

Turbulent Prandtl number

κ:

Von Karman constant

ρ:

Density

τ ij :

Subgrid scale stress tensor

μ:

Fluid dynamic viscosity

μ t :

Turbulent dynamic viscosity

ν:

Laminar kinematic viscosity

ν t :

Turbulent kinematic viscosity

References

  1. Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13:106–115

    Article  Google Scholar 

  2. Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Therm Fluid Sci 6:111–134

    Article  Google Scholar 

  3. Meola C, Luca L, Carlomagno GM (1996) Influence of shear layer dynamics on impingement heat transfer. Exp Therm Fluid Sci 13:29–37

    Article  Google Scholar 

  4. Popiel CO, Trass O (1991) Visualization of a free and impinging round jet. Exp Therm Fluid Sci 4:253–264

    Article  Google Scholar 

  5. Yokobori S, Kasagi N, Hirata M (1983) Transport phenomena at the stagnation region of a two-dimensional impinging jet. Trans Jpn Soc Mech Eng B 49:1029–1039

    Article  Google Scholar 

  6. Sakakibara J, Hishida K, Phillips WRC (2001) On the vortical structure in a plane impinging jet. J Fluid Mech 434:273–300

    Article  MATH  Google Scholar 

  7. Beaubert F, Viazzo S (2003) Large Eddy simulations of a plane turbulent impinging jet at moderate Reynolds numbers. Int J Heat Fluid Flow 24:512–519

    Article  Google Scholar 

  8. Maurel S, Solliec C (2001) A turbulent plane jet impinging nearby and far from a flat plate. Exp Fluids 31:687–696

    Article  Google Scholar 

  9. Tsubokura M, Kobayashi AT, Taniguchi N, Jones WP (2003) A numerical study on the eddy structures of impinging jets excited at the inlet. Int J Heat Fluid Flow 24:500–511

    Article  Google Scholar 

  10. Cornaro C, Fleischer AS, Goldstein RJ (1999) Flow visualization of a round jet impinging on cylindrical surfaces. Exp Therm Fluid Sci 20:66–78

    Article  Google Scholar 

  11. Gau C, Chung CM (1991) Surface curvature effect on slot air-jet impingement cooling flow and heat transfer process. ASME J Heat Transf 113:858–864

    Article  Google Scholar 

  12. Craft T, Graham L, Launder B (1993) Impinging jet studies for turbulence model assessment—II. An examination of the performance of four turbulence models. Int J Heat Mass Transf 36:2685–2697

    Article  Google Scholar 

  13. Leschziner MA, Ince NZ (1995) Computational modeling of 3-dimensional impinging jets with and without cross-flow using 2nd-moment closure. Comput Fluids 24:811–832

    Article  MATH  Google Scholar 

  14. Zuckerman N, Lior N (2007) Radial slot jet impingement flow and heat transfer on a cylindrical target. AIAA J Thermophys Heat Transf 21(3):548–561

    Article  Google Scholar 

  15. Voke PR, Gao S (1998) Numerical study of heat transfer from an impinging jet. Int J Heat Mass Transf 41:671–680

    Article  MATH  Google Scholar 

  16. Cziesla T, Biswas G, Chattopadhyay H, Mitra NK (2001) Large-eddy simulation of flow and heat transfer of an impinging slot jet. Int J Heat Fluid Flow 22:500–508

    Article  Google Scholar 

  17. Hattori H, Nagano Y (2004) Direct numerical simulation of turbulent heat transfer in plane impinging jet. J Heat Fluid Flow 25(5):749–758

    Article  Google Scholar 

  18. Chan TL, Leung CW, Jambunathan K, Ashforth-Frost S, Zhou Y, Liu MH (2002) Heat transfer characteristics of a slot jet impinging on a semi-circular convex surface. Int J Heat Mass Transf 45:993–1006

    Article  Google Scholar 

  19. Hadžiabdić M, Hanjalić K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260

    MATH  Google Scholar 

  20. Addad Y, Gaitonde U, Laurence D, Rolfo S (2008) Optimal unstructured meshing for large eddy simulations. Quality and reliability of large-eddy simulations. ERCOFTAC Ser 12(I):93–103

    Article  Google Scholar 

  21. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids 3:1760–1765

    Article  MATH  Google Scholar 

  22. Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure model. Phys Fluids 4:633–635

    Article  Google Scholar 

  23. ANSYS (2009) Inc. Fluent User Guide and Fluent Theory Guide, version 12.1

  24. Versteeg H, Malalasekra W (2007) An introduction to computational fluid dynamics: the finite volume method, 2nd edn. Pearson Education Limited, Edinburgh Gate

    Google Scholar 

  25. Kraichnan R (1970) Diffusion by a random velocity field. Phys Fluids 11:21–31

    MathSciNet  Google Scholar 

  26. Smirnov R, Shi S, Celik I (2001) Random flow generation technique for large eddy simulations and particle-dynamics modeling. J Fluids Eng 123:359–371

    Article  Google Scholar 

  27. Leonard BP (1991) The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput Methods Appl Mech Eng 88(1):17–74

    Article  MATH  Google Scholar 

  28. Kornhaas M, Sternel DC, Schäfer M (2008) Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization. Quality and reliability of large-eddy simulations. ERCOFTAC Ser 12(II):119–130

    Article  Google Scholar 

  29. Browne LWB, Antonia RA, Chambers AJ (1984) The interaction region of a turbulent plane jet. J Fluid Mech 149:355–373

    Article  Google Scholar 

  30. Yokobori S, Kasagi N, Hirata M (1977) Characteristic behaviour of turbulence in the stagnation region of a two-dimensional submerged jet impinging normally on a flat plate. In: Proceedings of symposium on turbulent shear flows, Pensylvania, 17–25 March

  31. Sakakibara J, Hishida K, Maeda M (1997) Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence). Int J Heat Mass Transf 40(13):3163–3176

    Article  Google Scholar 

  32. Deo RC, Mi J, Nathan GJ (2007) The Influence of nozzle aspect ratio on plane jets. Exp Therm Fluid Sci 31:825–838

    Article  Google Scholar 

  33. Trentacoste N, Sforza P (1967) Further experimental results for three-dimensional free jets. AIAA J 6(5):885–890

    Google Scholar 

  34. Le Ribault C, Sarkar S, Stanley SA (2001) Large eddy simulation of evolution of a passive scalar in plane jet. AIAA J 39(8):1509–1516

    Article  Google Scholar 

  35. Sreenivasan KR, Antonia RA, Chambers AJ (1984) On the variation of the turbulent Prandtl number in shear flows. Int Commun Heat Mass Transf 11:497–501

    Article  Google Scholar 

  36. Beltaos S, Rajaratnam N (1973) Plane turbulent impinging jets. J Hydraul Res 1:29–60

    Article  Google Scholar 

  37. Uddin N, Neumann SO, Weigand B, Younis BA (2009) Large eddy simulations and heat-flux modelling in a turbulent impinging jet. Numer Heat Transf A 55:906–930

    Article  Google Scholar 

  38. Neuendorf R, Wygnanski I (1999) On a turbulent wall jet flowing over a circular cylinder. J Fluid Mech 381:1–25

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyes Khezzar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benhacine, A., Kharoua, N., Khezzar, L. et al. Large eddy simulation of a slot jet impinging on a convex surface. Heat Mass Transfer 48, 1–15 (2012). https://doi.org/10.1007/s00231-011-0835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0835-3

Keywords

Navigation