Skip to main content
Log in

Computational flow and heat transfer of multiple circular jets impinging on a flat surface with effusion

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Computational investigations are reported on the local flow and heat transfer characteristics from staggered, multiple circular air jets impinging on a flat surface with effusion holes. The geometrical and flow parameters for the computational study are chosen as per the experimental arrangement of Cho and Rhee J Turbomachinery 123:601–608, (14) so as to explain salient features observed in these experiments. The two peaks in the Nusselt number observed in the case of H/D = 6 and three peaks in the case of H/D = 2 are attributed to the flow characteristics such as primary vortices forming an up-wash region, followed by secondary vortices resulting in a secondary stagnation zone. The magnitude of local peak in heat transfer increases up to 88% with increasing values of D/d from 0.5 to 1.5 at Re = 10,000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

c:

Center to center distance of jet holes, m

D:

Diameter of jet hole, m

d:

Diameter of film hole, m

H:

Distance between target surface and jet hole exit, m

kf :

Thermal conductivity of fluid, W/m–K

m:

Mass flow rate, kg/sec

Nu:

Nusselt number

q″:

Local heat flux, W/m2

p:

Local static pressure, N/m2

pmax :

Maximum local static pressure, N/m2

Cp :

Pressure coefficient (p/p max)

p0 :

Stagnation pressure, N/m2

Tj :

Jet temperature, K

Ttp :

Target plate temperature, K

v:

Velocity magnitude in y—direction, m/s

U:

Jet exit velocity, m/s

t1 :

Jet plate thickness, m

t2 :

Target plate thickness, m

x:

x-co-ordinate, m

y:

y-co-ordinate, m

z:

z-co-ordinate, m

References

  1. Livingood NB, Hrycay P (1973) Impingement heat transfer from turbulent air jets to flat plates: a literature survey. NASA TM X- 2778

  2. Martin H (1977) Heat and mass transfer between impinging gas jets and solid surfaces. Adv Heat Transf 13:1–60

    Article  Google Scholar 

  3. Downs SJ, James EH (1987) Jet impingement heat transfer: a literature survey. ASME 87-H-35, proceedings of the national heat transfer conference. Pittsburgh, Pennsylvania, August 9–12

  4. Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13–2:106–115

    Article  Google Scholar 

  5. Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Ther Fluid Sci 6:111–134

    Article  Google Scholar 

  6. Sezai I, Mohamad AA (1999) Three dimensional stimulation of laminar rectangular impinging jets, flow structure, and heat transfer. Trans ASME J Heat Transf 121:50–56

    Article  Google Scholar 

  7. Aldabagh LBY, Sezai I, Mohamad AA (2003) Three dimensional investigation of a laminar impinging square jet interaction with cross-flow. ASME J Heat Transf 125:243–249

    Article  Google Scholar 

  8. Aldabagh LBY, Mohamad AA (2007) Effect of jet-to-plate spacing in laminar array jets impinging. Heat Mass Transf 43:265–273

    Article  Google Scholar 

  9. Aldabbagh LBY, Mohamad AA (2009) Mixed convection in an impinging laminar single square jet. ASME J Heat Transf 131(022201):1–7

    Google Scholar 

  10. Aldabbag LBY, Mohamad AA (2009) A three dimensional numerical simulation of impinging jet arrays on a moving plate. Int J Heat and Mass Transf 52:4894–4900

    Article  Google Scholar 

  11. Hollworth BR, Dangan L (1980) Arrays of impinging jets with spent fluid removal through vent holes on the target surface part I: average heat transfer. Trans ASME J Eng Power 102:994–999

    Article  Google Scholar 

  12. Hollworth BR, Lehmann G, Rosiczkowski J (1983) Arrays of impinging jets with spent fluid removal through vent holes on the target surface part II: local heat transfer. Trans ASME J Eng Power 105:393–402

    Article  Google Scholar 

  13. Ekkad SV, Huang Y, Han JC (1999) Impingement heat transfer on a target plate with film cooling holes. AIAA J Thermophys Heat Transf 13(4):522–528

    Article  Google Scholar 

  14. Cho HH, Rhee DH (2001) Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems. J Turbomachinery 123:601–608

    Article  Google Scholar 

  15. Ramakumar BVN, Prasad BVSSS (2008) Computational flow and heat transfer of a circular jets impinging on a concave surface. Heat Mass Transf 44(6):667–678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. S. S. S. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashok kumar, M., Prasad, B.V.S.S.S. Computational flow and heat transfer of multiple circular jets impinging on a flat surface with effusion. Heat Mass Transfer 47, 1121–1132 (2011). https://doi.org/10.1007/s00231-011-0776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0776-x

Keywords

Navigation