Skip to main content
Log in

Nucleate boiling of FC-87/FC-72 zeotropic mixtures on a horizontal copper disc

  • Special Issue
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents nucleate boiling experimental results, at atmospheric pressure, for heat fluxes q ≤ 40 kW/m2, for FC-87/FC-72 binary mixtures in molar fractions of 0/100, 25/75, 50/50, 75/25, 85/15 and 100/0, at saturation temperatures for pure fluids and bubble points for mixtures. The test section was an upward facing copper disc of 12 mm diameter and 1 mm thickness. The experimental heat transfer coefficient was compared with the correlations of Rohsenow (1952), as reported by Rohsenow et al. (Handbook of heat transfer, McGraw-Hill, New York, 1998), Stephan and Abdelsalam (Int J Heat Mass Transfer 23;73–78, 1978) and Cooper (Int Chem Eng Symp Ser 86:785–792, 1984) for pure fluids and the semi-empirical models of Stephan and Körner (Chem Ing Tech Jahrg 7:409–484, 1969), Thome (J Heat Transfer 104:474–478, 1982), Fujita et al. (1996), as reported by Rohsenow et al. (Handbook of heat transfer, McGraw-Hill, New York, 1998), Fujita and Tsutsui (Int J Heat Mass Transfer 37(1):291–302, 1994) and Calus and Leonidopoulos (Int J Heat Mass Transfer 17:249–256, 1973) for mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c pl :

liquid specific heat (J/kgK)

C sf :

constant in Rohsenow correlation

D :

mass diffusivity (m2/s)

d b :

departure bubble diameter (m)

g :

acceleration due to gravity (m/s2)

h :

heat transfer coefficient (kW/m2 K)

h lv :

latent heat of vaporization (J/kg)

K :

correction factor

k l :

liquid thermal conductivity (W/mK)

M :

molecular weight (kg/kmol)

p :

pressure (N/m2)

p r :

reduced pressure

Pr :

Prandtl number

q :

heat flux (kW/m2)

R a :

surface roughness (μm)

T :

temperature (K, °C)

x :

liquid molar fraction of the more volatile component

y :

vapor molar fraction of the more volatile component

ΔT si :

i = 1, 2, wall superheating for pure fluids (K)

ΔT :

temperature difference (K)

ΔT db :

temperature difference between the dew point and the bubble point (K)

θ :

contact angle (°)

μ :

dynamic viscosity (Pa s)

ρ :

density (kg/m3)

σ :

surface tension (J/m2)

bp:

bubble point

C:

Cooper

db:

the dew point minus the bubble point

id:

ideal

l:

liquid

R:

Rohsenow

SA:

Stephan–Abdelsalam

sat:

saturation

th:

theoretical

v:

vapor

w:

wall

References

  1. Fujita Y, Tsutsui M (1994) Heat transfer in nucleate pool boiling of binary mixtures. Int J Heat Mass Transfer 37(1):291–302

    Article  Google Scholar 

  2. Stephan K (1992) Heat transfer in condensation and boiling, chap 14. Springer, Berlin

    Google Scholar 

  3. Carey VP (1992) Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation process in heat transfer equipment. Taylor & Francis, London

    Google Scholar 

  4. Van Wijk WR, Vos AS, Stralen SJDV (1956) Heat transfer to boiling binary liquid mixtures. Chem Eng Sci 5:68–80

    Article  Google Scholar 

  5. Benjamim RJ, Balakrishnan AR (1999) Nucleate boiling heat transfer of binary mixtures at low to moderate heat fluxes. J Heat Transfer 121:365–374

    Article  Google Scholar 

  6. Thome JR (1983) Prediction of binary mixture boiling heat transfer coefficients using only phase equilibrium data. Int J Heat Mass Transfer 26(7):965–974

    Article  MATH  Google Scholar 

  7. Tolubinskiy VI, Ostrovskiy YN (1969) Mechanism of heat transfer in boiling of binary mixtures. Heat Transfer Sov Res 1(6):6–11

    Google Scholar 

  8. Thome JR (1982) Latent and sensible heat transfer rates in the boiling of binary mixtures. J Heat Transfer 104:474–478

    Google Scholar 

  9. Calus WF, Rice P (1972) Pool boling-binary liquid mixtures. Chem Eng Sci 27:1687–1697

    Google Scholar 

  10. Calus WF, Leonidopoulos DJ (1973) Pool boiling-binary liquid mixtures. Int J Heat Mass Transfer 17:249–256

    Article  Google Scholar 

  11. Kandlikar SG (1998) Boiling heat transfer with binary mixtures: part I—A theoretical model for pool boiling. ASME J Heat Transfer 120:380–387

    Article  Google Scholar 

  12. Stephan K, Körner M (1969) Berechnung des wärmeübergangs verdampfender binärer flüssigkeitsgemische. Chem Ing Tech Jahrg 7:409–484

    Article  Google Scholar 

  13. Rohsenow WM, Hartnett JP, Cho YI (1998) Handbook of heat transfer, chap 15. McGraw-Hill, New York

    Google Scholar 

  14. Fujita Y, Tsutsui M (2003) Fully developed nucleate boiling of three component mixtures. In: Keynote, 5th int conference on boiling heat transfer, Montego Bay, Jamaica, p 9

  15. Stephan K (1995) Two-phase heat exchange for new refrigerants and their mixtures. Elsevier Sci 18(3):198–209

    Google Scholar 

  16. Stephan K, Abdelsalam M (1978) Heat-transfer correlation for natural convection boiling. Int J Heat Mass Transfer 23:73–78

    Article  Google Scholar 

  17. Cooper MG (1984) Saturation nucleate pool boiling—a simple correlation. Int Chem Eng Symp Ser 86:785–792

    Google Scholar 

  18. Passos JC, Reinaldo RF (2000) Analysis of pool boiling within smooth and grooved tubes. Exp Therm Fluid Sci 22:35–44

    Article  Google Scholar 

  19. Schlindwein AR (2006) Pool nucleate boiling of a zeotropic binary mixture. M.Sc. dissertation, in Portuguese, Univ. Federal de Santa Catarina, Florianópolis, Brazil

  20. EES (1992–2003) Engineering equation solve, Commercial Version 6.883-3D

  21. REFPROP (1998) Thermodynamic and transport properties of refrigerants and refrigerant mixtures, NIST Standard Reference Database 23—Version 6.0

  22. Cardoso EM, Passos JC (2005) Confined nucleate boiling of FC-72 on a downward or upward facing copper disc. In: Proceedings of the int congress of mechanical engineering, Ouro Preto-MG, Brazil, pp 1–10

Download references

Acknowledgments

The authors are grateful for the support of CAPES and CNPq Brazilian Agencies in the performance of this study and to Mr. E. L. Silva for his important contribution to the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Passos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlindwein, A.R., Martin, F.O., Misale, M. et al. Nucleate boiling of FC-87/FC-72 zeotropic mixtures on a horizontal copper disc. Heat Mass Transfer 45, 937–944 (2009). https://doi.org/10.1007/s00231-008-0404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0404-6

Keywords

Navigation