Skip to main content
Log in

The influence of oil on nucleate pool boiling heat transfer

  • Special Issue
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The influence of various oil contents in R134a is investigated for nucleate pool boiling on copper tubes either sandblasted or with enhanced heating surfaces (GEWA-B tube). Polyolester oils (POE) (Reniso Triton) with medium viscosity 55 cSt (SE55) and high viscosity 170 cSt (SE170) were used. Heat transfer coefficients were obtained for boiling temperatures between −28.6 and +20.1°C. The oil content varied from 0 to 5% mass fraction. For the sandblasted tube and the SE55 oil the heat transfer coefficients for the refrigerant/oil-mixture can be higher or lower than those for the pure refrigerant, depending on oil mass fraction, boiling temperature and heat flux. In some cases the highest heat transfer coefficients were obtained at a mass fraction of 3%. For the 170 cSt oil there is a clear decrease in heat transfer for all variations except for a heat flux 4,000 W/m2 and −10.1°C at 0.5% oil content. The heat transfer coefficients are compared to those in the literature for a smooth stainless steel tube and a platinum wire. For the enhanced tube and 55 cSt oil the heat transfer coefficients are clearly below those for pure refrigerant in all cases. The experimental results for the sandblasted tube are compared with the correlation by Jensen and Jackman. The calculated values are within +20 and −40% for the medium viscosity oil and between +50% and −40% for the high viscosity oil. A correlation for predicting oil-degradation effects on enhanced surfaces does not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

α :

heat transfer coefficient (W/m² K)

α mix :

heat transfer coeff. of refrigerant-oil mixture (W/m2 K)

α ref :

heat transfer coefficient of pure refrigerant (W/m2 K)

q :

heat flux (W/m²)

p :

saturation pressure (bar)

p cr :

critical pressure (bar)

p*:

reduced pressure p/pcr (−)

w :

oil mass fraction (%, −)

w eff :

effective oil mass fraction near the tube (%, −)

ϑ s :

boiling temperature (°C)

References

  1. Mohrlok K, Spindler K, Hahne E (1998) Stand des Wissens zum Wärmeübergang beim Sieden von Kältemittel/Öl-Gemischen, DKV-Tagungbericht, 25. Jahrg., Würzburg, Germany, Bd. 2.1, 171–192

  2. Mohrlok K (2005) Wärmeübertragung beim Behältersieden von Kältemittel/Öl-Gemischen an einem Glattrohr und einem Hochleistungsrohr. Dissertation, University of Stuttgart, DKV-Forschungsbericht 71, Stuttgart

  3. Shen B, Groll EA (2005) A critical review of the influence of lubricants on the heat transfer and pressure drop of refrigerants. Part I: lubricant influence on pool and flow boiling. HVAC R Res 11(3):341–359

    Google Scholar 

  4. Möller C (1998) Blasenbildung und Wärmeübergang beim Behältersieden von Kältemittel-Öl-Gemischen. Dissertation University of Stuttgart

  5. Zarnescu V, Webb RL, Chien LH (2000) Effect of oil on the boiling performance of structured and porous surfaces. HVAC R Res 6(1):41–53

    Google Scholar 

  6. Mohrlok K, Spindler K, Hahne E (2000) Pool boiling heat transfer of R134a-oil mixture on a smooth tube and an enhanced tube. 3rd European thermal science conference, Heidelberg, Germany, pp 785–790

  7. Mohrlok K, Spindler K, Hahne E, Müller-Steinhagen H (2001) Pool boiling heat transfer of different refrigerant–oil mixtures on a sandblasted smooth tube. IIF/IIR-Comm. B1, Paderborn, Germany, 2.64–2.71

  8. Mohrlok K, Spindler K, Hahne E (2001) The influence of a low viscosity oil on the pool boiling heat transfer of the refrigerant R507. Int J Refrig 24:25–40

    Article  Google Scholar 

  9. Gorenflo D (2006) VDI-Wärmeatlas, chapter Hab, Springer, Berlin

    Google Scholar 

  10. Luke A (2006) Preparation, measurement and analysis of the microstructure of evaporator surfaces. Int J Therm Sci 45:237–256

    Article  Google Scholar 

  11. Jensen JK, Jackman DL (1984) Prediction of nucleate pool boiling heat transfer coefficients of refrigerant–oil mixtures. J Heat Transfer 106:184–190

    Article  Google Scholar 

  12. Spindler K (2003) Thermodynamische, wärmetechnische und ökologische Betrachtungen für Kältemittel beim Einsatz in Wärmepumpen und Kältemaschinen. DKV-Forschungsbericht Nr. 68, Stuttgart, Germany

  13. Shi K, Hahne E (1991) Über den praktischen Nutzen von Siedeuntersuchungen am Draht. Chem Ing Tech 63:128–129

    Article  Google Scholar 

  14. Stephan K (1964) Einfluss des Öls auf den Wärmeübergang von siedendem Frigen 12 und Frigen 22. Kältetechnik 16:162–166

    Google Scholar 

  15. Ivanov OP (1965) Experimental investigation of heat transfer in boiling of Freon/oil-mixtures (orig. Russian). Cholodilnaja Technika 42/3:32–35

    Google Scholar 

  16. Wallner R, Dick H-G (1975) Heat transfer to boiling refrigerant/oil-mixtures. Proceedings of the 14th international congress on refrigeration, Moscow, 2: pp 351–359

  17. Sauer HJ, Gibson RK, Chonrungreong S (1978) Influences of oil on the nucleate boiling of refrigerants. Proceedings of the 6th international heat transfer conference, Toronto, 1: pp 181–186

  18. Burkhardt J (1981) Einfluß der Oberflächenspannung auf den Wärmeübergang beim Blasensieden von Kältemittel R11/Öl-Gemischen. Dissertation University of Stuttgart

  19. Stephan K, Mitrovic J (1982) Heat transfer in natural convection of refrigerant/oil mixtures. Proceedings of the 7th international heat transfer conference, München, 4: pp 73–87

  20. Hahne E, Novoryta A (1984) Calculation of heat transfer coefficients for nucleate boiling in binary mixtures of refrigerant/oil. Int Comm Heat Mass Transfer 11/5:417–427

    Article  Google Scholar 

  21. Mitrovic J (1998) Nucleate boiling of refrigerant–oil mixtures: bubble equilibrium and oil enrichment at the interface of a growing vapour bubble. Int J Heat Mass Transfer 41:3451–3467

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bundesministerium für Wirtschaft (BMWi), Germany through the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF), Germany. The project was accompanied by a work group of the Forschungsrat Kältetechnik e.V., Frankfurt a.M., Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Spindler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spindler, K., Hahne, E. The influence of oil on nucleate pool boiling heat transfer. Heat Mass Transfer 45, 979–990 (2009). https://doi.org/10.1007/s00231-007-0321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-007-0321-0

Keywords

Navigation