Skip to main content
Log in

The derivation of thermal relaxation time between two-phase bubbly flow

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Thermal relaxation time constant is derived analytically for the relaxed model with unequal phase-temperatures of a vapour bubble at saturation temperature and a non-steady temperature field around the growing vapour bubble. The energy and state equation are solved between two finite boundary conditions. Thermal relaxation time perform a good agreement with Mohammadein (in Doctoral thesis, PAN, Gdansk, 1994) and Moby Dick experiment in terms of non-equilibrium homogeneous model (Bilicki et al. in Proc R Soc Lond A428:379–397, 1990) for lower values of initial void fraction. Thermal relaxation is affected by Jacob number, superheating, initial bubble radius and thermal diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson DA, Tannehill JC, Pietcher RH (1984) Computational fluid mechanics and transfer. Hemisphere, Washington

    MATH  Google Scholar 

  2. Bauer EG, Houdayer GR, Sureau HM (1976) A non-equilibrium axial flow model and application to loss-of-coolant accident analysis: the CLYSTERE system code, “paper presented at the OECD/NEA specialists” meeting on Transient Two-Phase Flow, Toronto, Canada

  3. Bilicki Z, Kestin J (1990) Physical aspects of the relaxation model in two-phase flow. Proc R Soc Lond A 428:379–397

    MATH  Google Scholar 

  4. Bilicki Z, Kestin J, Pratt MM (1990) A reinterpretation of the results of the Moby Dick experiment in terms of the non equilibrium model. J Fluid Eng Trans ASME 112:212–217

    Article  Google Scholar 

  5. Bilicki Z, Kwidzinski R, Mohammadein SA (1996) An estimation of a relaxation time of heat and mass exchange in the liquid–vapour bubble flow. Int J Heat Mass Transfer 39(4):753–759

    Article  MATH  Google Scholar 

  6. Hsieh DY (1965) Some analytical aspects of bubble dynamics. J Basic Eng ASME D87:991–1005

    Google Scholar 

  7. Madejski J, Staiszewski B (1971) Heat transfer in boiling and two-phase flow, vol l (in Polish). Osrodek Informacji o Energii Jadrowej, Warsaw

  8. Mohammadein SA (1994) Evaluation of characteristic time in the relaxation model for one-component bubble-flow. Doctoral Thesis, PAN, Gdansk

  9. Mohammadein SA, Sh A. Gouda temperature distribution in a mixture surrounding a growing vapour bubble. J Heat Mass Transfer. DOI 10.1007/s00231-004-0585-6

  10. Prosperetti A, Plesset MS (1978) Vapour-bubble growth in a superheated liquid. J Fluid Mech 85:349–368

    Article  Google Scholar 

  11. Reocreux M (1974) Contribution a l’etude des debits critiques en ecoulement diphasique eau vapeur. These, Univ. Scientifique et Medicale, Grenoble, France

  12. Scriven LE (1959) On the dynamics of phase growth. Chem Eng Sci 10:1–13

    Article  Google Scholar 

  13. Selmer - Olsen S (1991) Etude theoretique et experimentale des ecoulements diphasiques en tuyere convergente-divergence. These, de l’Institut National Polytechnique dGrenoble, France

Download references

Acknowledgements

The author is grateful to the reviewers for their useful comments

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Evaluation of \(\bar{T}_{{\text{l}}} (\theta _{{\text{T}}} )\)

The average temperature \(\bar{T}_{{\text{l}}} (t_{{\text{i}}} )\) is estimated from temperature distribution around the growing of vapour bubble between two boundaries R(t i) and R m respectively as follows

$$\bar{T}_{{\text{l}}} (t_{{\text{i}}} ) = \frac{1} {{V_{{\text{l}}} }}{\int\limits_{R(t_{{\text{i}}} )}^{R_{{\text{m}}} } {{\left( {4\pi r^{2} } \right)}T_{{\text{l}}} (r,t_{{\text{i}}} ){\text{d}}r} },\quad t_{{\text{i}}} \;{\text{is any}}\;{\text{time}}{\text{.}}$$
(24)

where

$$\bar{T}_{{\text{l}}} (t_{{\text{i}}} ).$$
(25)

Integrating by parts, Eq. 24 becomes

$$\begin{aligned} \bar{T}_{{\text{l}}} (t_{{\text{i}}} ) = & \frac{1} {{R^{3}_{{\text{m}}} - R^{3} (t_{{\text{i}}} )}} \\ & \quad \times {\left[ {R^{3}_{{\text{m}}} T_{0} - R^{3} (t_{{\text{i}}} )T_{{\text{l}}} (R(t_{{\text{i}}} ),t_{{\text{i}}} ) - {\int\limits_{R(t_{{\text{i}}} )}^{R_{{\text{m}}} } {r^{3} \frac{{{\text{d}}T_{{\text{l}}} (r,t_{{\text{i}}} )}}{{{\text{d}}r}}{\text{d}}r} }} \right]}, \\ \end{aligned} $$
(26)

where

$$T_{{\text{l}}} (R_{{\text{m}}} ,t_{{\text{i}}} ) = T_{0} .$$
(27)

At, t i T, \(\frac{{{\text{d}}T_{{\text{l}}} (r,\theta _{{\text{T}}} )}} {{{\text{d}}r}} = \frac{{\partial T_{{\text{l}}} (r,\theta _{{\text{T}}} )}} {{\partial r}},\) then

$$ \begin{aligned} \bar{T}_{{\text{l}}} (\theta _{{\text{T}}} ) &= \frac{1} {{R^{3}_{{\text{m}}} - R^{3} (\theta _{{\text{T}}} )}} \\ \,&\quad \times {\left[ {R^{3}_{{\text{m}}} T_{0} - R^{3} (\theta _{{\text{T}}} )T_{{\text{l}}} (R(\theta _{{\text{T}}} ),\theta _{{\text{T}}} ) - {\int\limits_{R(\theta _{{\text{T}}} )}^{R_{{\text{m}}} } {r^{3} \frac{{\partial T_{{\text{l}}} (r,\theta _{{\text{T}}} )}} {{\partial r}}{\text{d}}r} }} \right]}. \\ \end{aligned} $$
(28)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadein, S.A. The derivation of thermal relaxation time between two-phase bubbly flow. Heat Mass Transfer 42, 364–369 (2006). https://doi.org/10.1007/s00231-004-0586-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-004-0586-5

Keywords

Navigation