Erratum to: Manuscripta Math. 165, 135–157 (2021). https://doi.org/10.1007/s00229-020-01200-7

In [1, Theorem 4.5], we claim that, given a reduced and geometrically irreducible hypersurface \(X = \{F=0\}\subset {\mathbb {P}}^n\) over \({\mathbb {F}}_q\), if it is Frobenius nonclassical, then it is nonreflexive. If we denote by the Gauss map of X, then X is nonreflexive if and only if, at a general point \(P\in X\), the pullback of differentials

$$\begin{aligned} d\gamma ^*_P:(\gamma ^*\Omega _{X^*})\otimes {{\mathbb {F}}_q(P)} \longrightarrow \Omega _{X}\otimes {\mathbb {F}}_q(P) \end{aligned}$$
(0.1)

is not injective. In our original argument, we intended to prove this property via [1, Lemma 4.6], which shows that the determinant of the Hessian matrix

$$\begin{aligned} H_F{:}{=}\left( F_{ij} \right) \quad \text {where}\quad F_{ij} = \frac{\partial ^2 F}{\partial X_j\partial X_i} \end{aligned}$$

is zero modulo F. While [1, Lemma 4.6] is correct, this is not sufficient to prove [1, Theorem 4.5]. The subtle error is the following incorrect assertion: a hypersurface X is nonreflexive if and only if the determinant of the Hessian matrix of X vanishes identically on X. Let us explain why this claim fails when \(\deg (X)\equiv 1\mod {\text {char}}({\mathbb {F}}_q)\).

Indeed, if we denote \(d = \deg (F)\) and \(F_i = \partial F/\partial X_i\), then a computation with Euler’s formula shows

$$\begin{aligned} \begin{pmatrix} d(d-1)F &{} (d-1)F_1 &{} \cdots &{} (d-1)F_n \\ (d-1)F_1 &{} F_{11} &{} \cdots &{} F_{n1} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ (d-1)F_n &{} F_{1n} &{} \cdots &{} F_{nn} \end{pmatrix} = \begin{pmatrix} X_0 &{} X_1 &{} \cdots &{} X_n \\ 0 &{} 1 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 1 \end{pmatrix} \cdot H_F\cdot \begin{pmatrix} X_0 &{} 0 &{} \cdots &{} 0 \\ X_1 &{} 1 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ X_n &{} 0 &{} \cdots &{} 1 \end{pmatrix}\nonumber \\ \end{aligned}$$
(0.2)

from which we see that \(\det (H_F)\) is constantly zero whenever \(d\equiv 1\mod {\text {char}}({\mathbb {F}}_q)\). Moreover, we actually assume that the Gauss map is finite in our original argument, but we mistakenly ignored this assumption in the statement of [1, Theorem 4.5]. In this erratum, we fix the statement and prove it without using [1, Lemma 4.6].

FormalPara Theorem 0.1

Let \(X\subset {\mathbb {P}}^n\) be a reduced and geometrically irreducible Frobenius nonclassical hypersurface over \({\mathbb {F}}_q\). Suppose that \(\dim (X) = \dim (X^*)\) (which is satisfied when X is smooth due to Zak’s theorem [2]). Then X is nonreflexive.

Our strategy of proof goes as follows: Let I and \(I'\) be the ideal sheaves for X and \(X^*\), respectively. Then there is a commutative diagram for sheaves of differentials:

(0.3)

Note that \(\gamma = \Gamma |_X\) where \(\Gamma \) is the polar map

$$\begin{aligned} \Gamma :{\mathbb {P}}^n\dashrightarrow ({\mathbb {P}}^n)^* : [X_0:\dots :X_n] \longmapsto \left[ \frac{\partial F}{\partial X_0}:\dots :\frac{\partial F}{\partial X_n}\right] . \end{aligned}$$

We have \(\gamma ^*\left( \Omega _{({\mathbb {P}}^n)^*}|_{X^*}\right) = \left( \Gamma ^*\Omega _{({\mathbb {P}}^n)^*}\right) |_{X}\) and the vertical arrow in the middle of (0.3) is induced by the pullback of differentials \( d\Gamma ^*:\Gamma ^*\Omega _{({\mathbb {P}}^n)^*}\longrightarrow \Omega _{{\mathbb {P}}^n}. \) Let \(U\subset {\mathbb {P}}^n\) be an open neighborhood of P where \(I(U) = (f)\). In order to prove that (0.1) is not injective, we will prove that the image of the linear map

$$\begin{aligned} d\Gamma ^*_P:(\Gamma ^*\Omega _{({\mathbb {P}}^n)^*})\otimes {{\mathbb {F}}_q(P)} \longrightarrow \Omega _{{\mathbb {P}}^n}\otimes {\mathbb {F}}_q(P) \end{aligned}$$
(0.4)

has dimension at most \(n-2 = \dim (X)-1\) modulo df.

1 Proof of the theorem

Let \([Y_0:\dots :Y_n]\) be homogeneous coordinates for \(({\mathbb {P}}^n)^*\) so that the polar map \(\Gamma \) can be written as \(Y_i = F_i\), and let \(y_i = Y_i/Y_0\) be the affine coordinates for the chart \(\{Y_0\ne 0\}\). Assume without loss of generality that the point \(P\in X\) belongs to the open subset

$$\begin{aligned} U{:}{=}\{X_0\ne 0\}\cap \{F_0\ne 0\}\cap \left( \bigcup _{i=1}^{n} \{F_i\ne 0\}\right) \subset {\mathbb {P}}^n. \end{aligned}$$

If we write \(x_i{:}{=}X_i/X_0\) and let \( f_i = f_i(x_1,\ldots ,x_n) \) be the dehomogenization of \(F_i\) with respect to \(X_0\), then \(\Gamma |_U\) can be expressed as \(y_i = f_i/f_0 = F_i/F_0\). In this setting, the map of differentials \(d\Gamma ^*|_U\) sends each \(dy_i\) to

$$\begin{aligned} dy_i= & {} \sum _{j=1}^n \frac{\partial (f_i/f_0)}{\partial x_j} dx_j = \sum _{j=1}^n\left( \frac{(\partial f_i/\partial x_j)f_0 - f_i(\partial f_0/\partial x_j) }{f_0^2} \right) dx_j\\= & {} \sum _{j=1}^n\left( \frac{F_{ij}F_0 - F_iF_{0j} }{F_0^2} \right) dx_j \end{aligned}$$

This linear map corresponds to the square matrix \(M_F/F_0\) where \(M_F\) is given by

$$\begin{aligned} M_F{:}{=}\begin{pmatrix} F_{11}-\frac{F_1}{F_0}F_{01} &{} F_{21}-\frac{F_2}{F_0}F_{01} &{} \cdots &{} F_{n1}-\frac{F_n}{F_0}F_{01}\\ F_{12}-\frac{F_1}{F_0}F_{02} &{} F_{22}-\frac{F_2}{F_0}F_{02} &{} \cdots &{} F_{n2}-\frac{F_n}{F_0}F_{02}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ F_{1n}-\frac{F_1}{F_0}F_{0n} &{} F_{2n}-\frac{F_2}{F_0}F_{0n} &{} \cdots &{} F_{nn}-\frac{F_n}{F_0}F_{0n} \end{pmatrix}. \end{aligned}$$

Now we extend the above matrix to the following one

$$\begin{aligned} H''_F{:}{=}\begin{pmatrix} 0 &{} F_1 &{} F_2 &{} \cdots &{} F_n\\ F_1 &{} F_{11}-\frac{F_1}{F_0}F_{01} &{} F_{21}-\frac{F_2}{F_0}F_{01} &{} \cdots &{} F_{n1}-\frac{F_n}{F_0}F_{01}\\ F_2 &{} F_{12}-\frac{F_1}{F_0}F_{02} &{} F_{22}-\frac{F_2}{F_0}F_{02} &{} \cdots &{} F_{n2}-\frac{F_n}{F_0}F_{02}\\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ F_n &{} F_{1n}-\frac{F_1}{F_0}F_{0n} &{} F_{2n}-\frac{F_2}{F_0}F_{0n} &{} \cdots &{} F_{nn}-\frac{F_n}{F_0}F_{0n} \end{pmatrix}. \end{aligned}$$

Lemma 1.1

Let \((0,a_1,\ldots ,a_n)\) be a nonzero vector where \(a_i\in \overline{{\mathbb {F}}_q}\). If

$$\begin{aligned} (0,a_1,\ldots ,a_n)\cdot H''_F(P) = 0 \qquad \text {where}\qquad P\in U, \end{aligned}$$

then the column space of \(M_F(P)\) has dimension \(\le n-2\) modulo \((F_1(P),\ldots ,F_n(P))^t\).

Proof

The hypothesis implies that

$$\begin{aligned} (a_1,\ldots ,a_n)\cdot M_F(P) = 0 \qquad \text {and}\qquad (a_1,\ldots ,a_n)\cdot (F_1(P),\ldots ,F_n(P))^t = 0. \end{aligned}$$

The first equation implies that of \({\text {rk}}(M_F(P))\le n-1\). If \({\text {rk}}(M_F(P))\le n-2\), the proof is done. If \({\text {rk}}(M_F(P)) = n-1\), the second equation above implies that \((F_1(P),\ldots ,F_n(P))^t\) belongs to the column space of \(M_F(P)\), which proves the claim. \(\square \)

The matrix \(H''_F\) is related to the Hessian matrix \(H_F\) in the following way: If we restrict the matrix on the left hand side of (0.2) to \(X = \{F=0\}\) and then divide its first row and first column by \((d-1)\), we will get

$$\begin{aligned} H'_F{:}{=}\begin{pmatrix} 0 &{} F_1 &{}\cdots &{} F_n\\ F_1 &{} F_{11} &{} \cdots &{} F_{n1}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ F_n &{} F_{1n} &{} \cdots &{} F_{nn}\\ \end{pmatrix} = \begin{pmatrix} 1 &{} 0 &{} \cdots &{} 0\\ \frac{F_{01}}{F_0} &{} 1 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \frac{F_{0n}}{F_0} &{} 0 &{} \cdots &{} 1 \end{pmatrix}\cdot H''_F. \end{aligned}$$
(1.1)

However, we cannot divide by \(d-1\) in the field when \(d\equiv 1 \mod p\). We see that the matrix \(H''_F\) is the correct replacement for the usual Hessian in positive characteristic, especially when \(d\equiv 1\mod p\).

On the other hand, X is Frobenius nonclassical means that there exists a polynomial R that satisfies

$$\begin{aligned} FR = X_0^q F_0+X_1^qF_1+\cdots +X_n^q F_n. \end{aligned}$$
(1.2)

Lemma 1.2

Let \(P = [1:X_1:\dots :X_n]\in X\cap U\). Then

$$\begin{aligned} \left( 1-d+R, X_1-X_1^q, X_2-X_2^q, \ldots , X_n-X_n^q\right) \cdot H'_F(P) = 0. \end{aligned}$$

Proof

Subtracting Euler’s formula \(dF = X_0F_0+\cdots + X_nF_n\) by (1.2) gives

$$\begin{aligned} (d-R)F=(X_0-X_0^q)F_0+(X_1-X_1^q)F_1+\cdots + (X_n-X_n^q)F_n. \end{aligned}$$
(1.3)

Taking partial derivatives of both sides with respect to \(X_i\) followed by a rearrangement gives

$$\begin{aligned} -R_iF= & {} (1-d+R)F_i +(X_0-X_0^q)F_{0i} \nonumber \\{} & {} + (X_1-X_1^q)F_{1i} + \cdots + (X_n-X_n^q)F_{ni} \end{aligned}$$
(1.4)

Then the statement follows by a straightforward computation with (1.3), (1.4), the hypothesis that \(X_0 = 1\), and the fact that \(F(P)=0\). \(\square \)

Proof of Theorem 0.1

Pick a general \(P = [1:X_1:\dots :X_n]\in X\cap U\). First we compute

$$\begin{aligned}&\left( 1-d+R, X_1-X_1^q, X_2-X_2^q, \ldots , X_n-X_n^q\right) \cdot \begin{pmatrix} 1 &{} 0 &{} \cdots &{} 0\\ \frac{F_{01}}{F_0} &{} 1 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \frac{F_{0n}}{F_0} &{} 0 &{} \cdots &{} 1 \end{pmatrix} \\&\quad = \left( (1-d+R)+\sum _{j=1}^n\left( \frac{F_{0j}}{F_0}(X_j-X_j^q)\right) , X_1-X_1^q, \ldots , X_n-X_n^q \right) \\&\quad \overset{(1.4)}{=} \left( 0, X_1-X_1^q, \ldots , X_n-X_n^q \right) \end{aligned}$$

Lemma 1.2 and relation (1.1) implies that \( \left( 0, X_1-X_1^q, \ldots , X_n-X_n^q \right) \cdot H''_F(P) = 0, \) which implies that \( \left( X_1-X_1^q, \ldots , X_n-X_n^q \right) \cdot M_F(P) = 0. \) By applying Lemma 1.1, we conclude that the image of \(d\gamma ^*_P\) has dimension \(\le n-2\) modulo \(\sum _{i=1}^nF_i(P)dx_i = df\), thus it cannot be injective. This shows that the Gauss map \(\gamma \) is inseparable, whence X is nonreflexive. \(\square \)