Skip to main content
Log in

m-approximate Taylor polynomial

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We define and investigate the class \(\tau _m^N(x)\) of functions provided with the notion of m-approximate Nth degree Taylor polynomial at \(x\in {\mathbb {R}}^n\). In particular we compare \(\tau _m^N(x)\) with the class \(t^{k,p}(x)\) of functions having the derivative of order k in the \(L^p\) sense at x (Ziemer in Weakly differentiable functions. GTM, Springer, Berlin, 1989, Section 3.5). We apply this machinery to prove several properties of Sobolev functions, such as a new sectional superdensity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press Inc., London (1975)

    MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press Inc., Oxford (2000)

    MATH  Google Scholar 

  3. Bojarski, B.: Differentiation of measurable functions and Whitney–Luzin type structure theorems. Helsinki University of Technology Institute of Mathematics Research Reports A572. http://math.tkk.fi/reports/a572.pdf

  4. Calderón, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Stud. Math. 20, 171–225 (1961)

    Article  MathSciNet  Google Scholar 

  5. Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge Tracts in Mathematics, vol. 108. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  6. Delladio, S.: Functions of class \(C^1\) subject to a Legendre condition in an enhanced density set. Rev. Mat. Iberoam. 28(1), 127–140 (2012)

    Article  MathSciNet  Google Scholar 

  7. Delladio, S.: A short note on enhanced density sets. Glasg. Math. J. 53(3), 631–635 (2011)

    Article  MathSciNet  Google Scholar 

  8. Delladio, S.: A Whitney-type result about rectifiability of graphs. Riv. Mat. Univ. Parma (N.S.) 5(2), 387–397 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Delladio, S.: On some properties of \(t^{h,1}\) functions in the Calderon–Zygmund theory. Methods Appl. Anal. 19(1), 1–19 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Delladio, S.: Density rate of a set, application to rectifiability results for measurable jets. Manuscr. Math. 142(3–4), 475–489 (2013)

    Article  MathSciNet  Google Scholar 

  11. Delladio, S.: Some new results about the geometry of sets of finite perimeter. Proc. R. Soc. Edinb. 146A, 79–105 (2016)

    Article  MathSciNet  Google Scholar 

  12. Delladio, S.: A note on some topological properties of sets with finite perimeter. Glasg. Math. J. 58(3), 637–647 (2016)

    Article  MathSciNet  Google Scholar 

  13. Delladio, S.: A note on a generalization of the Schwarz theorem about the equality of mixed partial derivatives. Math. Nachr. 290(11–12), 1630–1636 (2017). https://doi.org/10.1002/mana.201600195

    Article  MathSciNet  MATH  Google Scholar 

  14. Delladio, S.: Density-degree function for subsets of \(\mathbb{R}^n\). Houst. J. Math. 45(3), 743–762 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Delladio, S.: The tangency of a \(C^1\) smooth submanifold with respect to a non-involutive \(C^1\) distribution has no superdensity points. Indiana Univ. Math. J. 68(2), 393–412 (2019)

    Article  MathSciNet  Google Scholar 

  16. Delladio, S.: Approximate continuity and differentiability with respect to density degree. An application to BV and Sobolev functions. Preprint

  17. Evans, L.C., Gariepy, R.F.: Lecture Notes on Measure Theory and Fine Properties of Functions. Studies in Advanced Mathemtaics. CRC Press, Boca Raton (1992)

    Google Scholar 

  18. Gariepy, R.F., Ziemer, W.P.: Modern Real Analysis. PWS Publishing Company, Boston (1995)

    Google Scholar 

  19. Lukes, J., Maly, J., Zajicek, L.: Fine topology methods in real analysis and potential theory. In: Lecture Notes in Mathematics, vol. 1189. Springer (1986)

  20. Menne, U.: Second order rectifiability of integral varifolds of locally bounded first variation. J. Geom. Anal. 23(2), 709–763 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ponce, A.C.: Elliptic PDEs, Measures and Capacities (from the Poisson Equation to Nonlinear Thomas-Fermi problems). Tracts in Mathematics, vol. 23. European Mathematical Society, Zurich (2016)

    MATH  Google Scholar 

  22. Santilli, M.: Rectifiability and approximate differentiability of higher order for sets. Indiana Univ. Math. J. 68(3), 1013–1046 (2019)

    Article  MathSciNet  Google Scholar 

  23. Shakarchi, R., Stein, E.M.: Real Analysis (Measure Theory, Integration and Hilbert Spaces). Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  24. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  25. Ziemer, W.P.: Weakly Differentiable Functions. GTM, vol. 120. Springer, Berlin (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvano Delladio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delladio, S. m-approximate Taylor polynomial. manuscripta math. 163, 481–505 (2020). https://doi.org/10.1007/s00229-019-01167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01167-0

Mathematics Subject Classification

Navigation