Skip to main content
Log in

Mean convexity of the zero set of symmetric minimal surfaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb {R}^{n}\) be a bounded open set, \(\alpha > 0\) a given constant, and u a bounded local minimizer of the functional

$$\begin{aligned} \mathcal {F}(u) := \int _{\Omega } u^{\alpha } \sqrt{1 + |Du|^{2}} \, dx \end{aligned}$$

in the class \(BV_{+}^{1 + \alpha } (\Omega ) := \{ u \in L^{1+ \alpha } (\Omega ) : u \ge 0,\ u^{1 + \alpha } \in BV(\Omega ) \}\). We show that minimizers are elements of \(W^{1,1}_{loc}(\Omega ) \) and that the coincidence set \(\{u = 0\}\) is a set of locally finite perimeter in \(\Omega \), which, in case \(\alpha \ge 1\), has nonnegative inward mean curvature in the variational sense, i.e. is mean convex. In particular, if \(\alpha \ge 1\), we prove the inequality

$$\begin{aligned} \int _{\Omega } |D\chi _{\{u = 0 \} \cap E}| \le \int _{\Omega } |D\chi _{E}| - \int _{E \cap \{u > 0\}} \frac{\alpha }{u \sqrt{1 + |Du|^{2}}} \, dx \end{aligned}$$

for all sets \(E \subset \subset \Omega \) of finite perimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, New York (2000)

    MATH  Google Scholar 

  2. Bemelmans, J., Dierkes, U.: On a singular variational integral with linear growth. I. Existence and regularity of minimizers. Arch. Ration. Mech. Anal. 100(1), 83–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dierkes, U.: Minimal hypercones and \(C^{0,\frac{1}{2}}\) minimizers for a singular variational problem. Indiana Univ. Math. J. 37(4), 841–863 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dierkes, U.: Boundary regularity for solutions of a singular variational problem with linear growth. Arch. Ration. Mech. Anal. 105(4), 285–289 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dierkes, U.: A classification of minimal cones in \(\mathbb{R}^{n}\times \mathbb{R}^{+}\) and a counterexample to interior regularity of energy minimizing functions. Manuscr. Math. 63(2), 173–192 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dierkes, U.: On the regularity of solutions for a singular variational problem. Math. Z. 225(4), 657–670 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dierkes, U.S.: Minimal Surfaces Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  8. Dierkes, U., Hildebrandt, S., Tromba, A.J.: Global analysis of minimal surfaces. Revised and enlarged second edition. Grundlehren der Mathematischen Wissenschaften, vol. 341. Springer, Heidelberg (2010)

  9. Dierkes, U., Huisken, G.: The \(n\)-dimensional analogue of the catenary: existence and nonexistence. Pac. J. Math. 141(1), 47–54 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dierkes, U., Huisken, G.: The \(N\)-Dimensional Analogue of the Catenary: Prescribed Area Geometric Analysis and the Calculus of Variations. International Press, Cambridge (1996)

  11. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  12. Tennstädt, T.: Untersuchungen zur singulären Minimalflächengleichung. Dissertation, Universität Duisburg-Essen (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Tennstädt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tennstädt, T. Mean convexity of the zero set of symmetric minimal surfaces. manuscripta math. 155, 183–196 (2018). https://doi.org/10.1007/s00229-017-0940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0940-9

Mathematics Subject Classification

Navigation