Skip to main content
Log in

Gamma-convergence of nonlocal perimeter functionals

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Given \({\Omega\subset\mathbb{R}^{n}}\) open, connected and with Lipschitz boundary, and \({s\in (0, 1)}\), we consider the functional

$$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$

where \({E\subset\mathbb{R}^{n}}\) is an arbitrary measurable set. We prove that the functionals \({(1-s)\mathcal{J}_s(\cdot, \Omega)}\) are equi-coercive in \({L^1_{\rm loc}(\Omega)}\) as \({s\uparrow 1}\) and that

$$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$

where P(E, Ω) denotes the perimeter of E in Ω in the sense of De Giorgi. We also prove that as \({s\uparrow 1}\) limit points of local minimizers of \({(1-s)\mathcal{J}_s(\cdot,\Omega)}\) are local minimizers of P(·, Ω).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    Google Scholar 

  2. Bourgain, J., Brézis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, pp. 439–455. IOS Press (2001)

  3. Brézis, H.: How to recognize constant functions. A connection with Sobolev spaces, Uspekhi Mat. Nauk, 57, 59–74 (2002), transl. in Russian Math. Surveys 57, 693–708 (2002)

  4. Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces, preprint (2009)

  5. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Non-local minimal surfaces, preprint (2009)

  6. Dal Maso G.: An Introduction to Γ-Convergence. Birkhäuser, Basel (1993)

    Google Scholar 

  7. De Giorgi E.: Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazio a r dimensioni. Ricerche Mat. 4, 95–113 (1955)

    MATH  MathSciNet  Google Scholar 

  8. De Giorgi E., Letta E.: Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa 4, 61–99 (1977)

    MATH  MathSciNet  Google Scholar 

  9. Fonseca I., Müller S.: Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23, 1081–1098 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Monographs In Mathematics. Brickhauser, Basel (1984)

    Google Scholar 

  11. Maz’ya V., Shaposhnikova T.: Erratum to: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 201, 298–300 (2003)

    Article  MathSciNet  Google Scholar 

  12. Morse A.P.: Perfect blankets. Trans. Am. Math. Soc. 61, 418–422 (1947)

    MATH  MathSciNet  Google Scholar 

  13. Nguyen H.-M.: Further characterizations of Sobolev spaces. J. Eur. Math. Soc. 10, 191–229 (2008)

    MATH  Google Scholar 

  14. Nguyen, H.-M.: Γ-convergence, Sobolev norms and BV functions, preprint (2009)

  15. Visintin A.: Generalized coarea formula and fractal sets. Jpn. J. Indust. Appl. Math. 8, 175–201 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio, L., Philippis, G.D. & Martinazzi, L. Gamma-convergence of nonlocal perimeter functionals. manuscripta math. 134, 377–403 (2011). https://doi.org/10.1007/s00229-010-0399-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-010-0399-4

Mathematics Subject Classification (2000)

Navigation