Skip to main content
Log in

The effects of 2 weeks of statin treatment on mitochondrial respiratory capacity in middle-aged males: the LIFESTAT study

  • Clinical Trial
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Statins are used to lower cholesterol in plasma and are one of the most used drugs in the world. Many statin users experience muscle pain, but the mechanisms are unknown at the moment. Many studies have hypothesized that mitochondrial function could be involved in these side effects.

Aim

The aim of the study was to investigate mitochondrial function after 2 weeks of treatment with simvastatin (S; n = 10) or pravastatin (P; n = 10) in healthy middle-aged participants.

Methods

Mitochondrial respiratory capacity and substrate sensitivity were measured in permeabilized muscle fibers by high-resolution respirometry. Mitochondrial content (citrate synthase (CS) activity), antioxidant content, as well as coenzyme Q10 concentration (Q10) were determined. Fasting plasma glucose and insulin concentrations were measured, and whole body maximal oxygen uptake (VO2max) was determined.

Results

No differences were seen in mitochondrial respiratory capacity although a tendency was observed for a reduction when complex IV respiration was analyzed in both S (229 (169; 289 (95% confidence interval)) vs. 179 (146; 211) pmol/s/mg, respectively; P = 0.062) and P (214 (143; 285) vs. 162 (104; 220) pmol/s/mg, respectively; P = 0.053) after treatment. A tendency (1.64 (1.28; 2.00) vs. 1.28 (0.99; 1.58) mM, respectively; P = 0.092) for an increased mitochondrial substrate sensitivity (complex I-linked substrate; glutamate) was seen only in S after treatment. No differences were seen in Q10, CS activity, or antioxidant content after treatment. Fasting glucose and insulin as well as VO2max were not changed after treatment.

Conclusion

Two weeks of statin (S or P) treatment have no major effect on mitochondrial function. The tendency for an increased mitochondrial substrate sensitivity after simvastatin treatment could be an early indication of the negative effects linked to statin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grundy SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 319(1):24–33. doi:10.1056/NEJM198807073190105

    Article  CAS  PubMed  Google Scholar 

  2. Thompson PD, Clarkson P, Karas RH (2003) Statin-associated myopathy. JAMA 289(13):1681–1690. doi:10.1001/jama.289.13.1681

    Article  CAS  PubMed  Google Scholar 

  3. Paiva H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, Laakso J, Lehtimaki T, von Bergmann K, Lutjohann D, Laaksonen R (2005) High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther 78(1):60–68. doi:10.1016/j.clpt.2005.03.006

    Article  PubMed  Google Scholar 

  4. Bouitbir J, Charles AL, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, Piquard F, Geny B, Zoll J (2012) Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J 33(11):1397–1407. doi:10.1093/eurheartj/ehr224

    Article  CAS  PubMed  Google Scholar 

  5. Larsen S, Stride N, Hey-Mogensen M, Hansen CN, Bang LE, Bundgaard H, Nielsen LB, Helge JW, Dela F (2013) Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol 61(1):44–53. doi:10.1016/j.jacc.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  6. Kwak HB, Thalacker-Mercer A, Anderson EJ, Lin CT, Kane DA, Lee NS, Cortright RN, Bamman MM, Neufer PD (2012) Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes. Free Radic Biol Med 52(1):198–207. doi:10.1016/j.freeradbiomed.2011.10.449

    Article  CAS  PubMed  Google Scholar 

  7. Sirvent P, Fabre O, Bordenave S, Hillaire-Buys D, Raynaud De Mauverger E, Lacampagne A, Mercier J (2012) Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol Appl Pharmacol 259(2):263–268. doi:10.1016/j.taap.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  8. La Guardia PG, Alberici LC, Ravagnani FG, Catharino RR, Vercesi AE (2013) Protection of rat skeletal muscle fibers by either L-carnitine or coenzyme Q10 against statins toxicity mediated by mitochondrial reactive oxygen generation. Front Physiol 4:103. doi:10.3389/fphys.2013.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kettawan A, Takahashi T, Kongkachuichai R, Charoenkiatkul S, Kishi T, Okamoto T (2007) Protective effects of coenzyme Q10 on decreased oxidative stress resistance induced by simvastatin. J Clin Biochem Nutr 40(3):194–202. doi:10.3164/jcbn.40.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tobert JA (1988) Efficacy and long-term adverse effect pattern of lovastatin. Am J Cardiol 62(15):28J–34J

    Article  CAS  PubMed  Google Scholar 

  11. Chong PH, Seeger JD, Franklin C (2001) Clinically relevant differences between the statins: implications for therapeutic selection. Am J Med 111(5):390–400

    Article  CAS  PubMed  Google Scholar 

  12. Kaufmann P, Torok M, Zahno A, Waldhauser KM, Brecht K, Krahenbuhl S (2006) Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 63(19–20):2415–2425. doi:10.1007/s00018-006-6235-z

    Article  CAS  PubMed  Google Scholar 

  13. Taha DA, De Moor CH, Barrett DA, Gershkovich P (2014) Translational insight into statin-induced muscle toxicity: from cell culture to clinical studies. Transl Res 164(2):85–109. doi:10.1016/j.trsl.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  14. Staffa JA, Chang J, Green L (2002) Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 346(7):539–540. doi:10.1056/NEJM200202143460720

    Article  PubMed  Google Scholar 

  15. Study of the Effectiveness of Additional Reductions in C, Homocysteine Collaborative G, Armitage J, Bowman L, Wallendszus K, Bulbulia R, Rahimi K, Haynes R, Parish S, Peto R, Collins R (2010) Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet 376(9753):1658–1669. doi:10.1016/S0140-6736(10)60310-8

    Article  Google Scholar 

  16. Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, Kim RB, Tirona RG (2010) Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res 106(2):297–306. doi:10.1161/CIRCRESAHA.109.203596

    Article  CAS  PubMed  Google Scholar 

  17. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35(8):1381–1395. doi:10.1249/01.MSS.0000078924.61453.FB

    Article  PubMed  Google Scholar 

  18. Achten J, Gleeson M, Jeukendrup AE (2002) Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc 34(1):92–97

    Article  PubMed  Google Scholar 

  19. Larsen S, Stride N, Hey-Mogensen M, Hansen CN, Andersen JL, Madsbad S, Worm D, Helge JW, Dela F (2011) Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes. Diabetologia 54(6):1427–1436. doi:10.1007/s00125-011-2098-4

    Article  CAS  PubMed  Google Scholar 

  20. Head A, Jakeman PM, Kendall MJ, Cramb R, Maxwell S (1993) The impact of a short course of three lipid lowering drugs on fat oxidation during exercise in healthy volunteers. Postgrad Med J 69(809):197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295. doi:10.1038/nm788

    Article  CAS  PubMed  Google Scholar 

  22. Duncan AJ, Hargreaves IP, Damian MS, Land JM, Heales SJ (2009) Decreased ubiquinone availability and impaired mitochondrial cytochrome oxidase activity associated with statin treatment. Toxicol Mech Methods 19(1):44–50. doi:10.1080/15376510802305047

    Article  CAS  PubMed  Google Scholar 

  23. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590(14):3349–3360. doi:10.1113/jphysiol.2012.230185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lefort N, Glancy B, Bowen B, Willis WT, Bailowitz Z, De Filippis EA, Brophy C, Meyer C, Hojlund K, Yi Z, Mandarino LJ (2010) Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59(10):2444–2452. doi:10.2337/db10-0174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koh KK, Quon MJ, Han SH, Lee Y, Kim SJ, Shin EK (2010) Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J Am Coll Cardiol 55(12):1209–1216. doi:10.1016/j.jacc.2009.10.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laaksonen R, Jokelainen K, Laakso J, Sahi T, Harkonen M, Tikkanen MJ, Himberg JJ (1996) The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am J Cardiol 77(10):851–854. doi:10.1016/S0002-9149(97)89180-1

    Article  CAS  PubMed  Google Scholar 

  27. Laaksonen R, Jokelainen K, Sahi T, Tikkanen MJ, Himberg JJ (1995) Decreases in serum ubiquinone concentrations do not result in reduced levels in muscle tissue during short-term simvastatin treatment in humans. Clin Pharmacol Ther 57(1):62–66. doi:10.1016/0009-9236(95)90266-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants who volunteered to participate in the study. Regitze Kraunsøe, Jeppe Bach, and Christina N. Hansen are thanked for expert technical assistance. Financial support from the University of Copenhagen 2016 Center of Excellence grand (The LIFESTAT study) and the Nordea Foundation is gratefully acknowledged.

Author contribution

NS, JWH, FD, and SL designed the study. MA, NS, DS, TLD, FD, and SL collected data and undertook analysis. MA, NS, DS, TLD, JWH, FD, and SL wrote and accepted the finale version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen Larsen.

Ethics declarations

The ethics committee of the municipality of Copenhagen and Frederiksberg in Denmark approved the study protocol (H-4-2009-095). Oral and written consent was obtained from each participant in accordance with the Helsinki Declaration.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asping, M., Stride, N., Søgaard, D. et al. The effects of 2 weeks of statin treatment on mitochondrial respiratory capacity in middle-aged males: the LIFESTAT study. Eur J Clin Pharmacol 73, 679–687 (2017). https://doi.org/10.1007/s00228-017-2224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2224-4

Keywords

Navigation