Skip to main content

Advertisement

Log in

Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Paclitaxel has a broad spectrum of anti-tumor activity and is useful in the treatment of ovarian, breast, and lung cancer. Paclitaxel is metabolized in the liver by CYP2C8 and CYP3A4 and transported by P-glycoprotein. The dose-limiting toxicities are neuropathy and neutropenia, but the interindividual variability in toxicity and also survival is large. The main purpose of this study was to investigate the impact of genetic variants in CYP2C8 and ABCB1 on toxicity and survival.

Methods

The 182 patients previously treated for ovarian cancer with carboplatin and paclitaxel in either the AGO-OVAR-9 or the NSGO-OC9804 trial in Denmark or Sweden were eligible for this study. Genotyping was carried out on formalin-fixed tissue. The patients’ toxicity profiles and survival data were derived from retrospective data. CYP2C8*3, ABCB1 C1236T, G2677T/A, and C3435T were chosen a priori for primary analysis; a host of other variants were entered into an exploratory analysis.

Results

Clinical data and tissue were available from a total of 119 patients. Twenty-two single nucleotide polymorphisms (SNPs) in 10 genes were determined. Toxicity registration was available from 710 treatment cycles. In the primary analysis, no statistically significant correlation was found between CYP2C8*3, ABCB1 C1236T, G2677T/A, and C3435T and neutropenia, sensoric neuropathy, and overall survival.

Conclusion

CYP2C8*3 and the ABCB1 SNPs C1236T, G2677T/A, and C3435T were not statistically significantly correlated to overall survival, sensoric neuropathy, and neutropenia in 119 patients treated for ovarian cancer with paclitaxel/carboplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  PubMed  CAS  Google Scholar 

  2. Karlan BY, Markman MA, Eifel PJ (2004) Gynecologic cancers. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer. Principles and practice of oncology. Lippincott Williams & Wilkins, Philadelphia

  3. Harris JW, Rahman A, Kim BR, Guengerich FP, Collins JM (1994) Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 54:4026–4035

    PubMed  CAS  Google Scholar 

  4. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW (1994) Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 54:5543–5546

    PubMed  CAS  Google Scholar 

  5. Kumar G, Ray S, Walle T, Huang Y, Willingham M, Self S et al (1995) Comparative in vitro cytotoxic effects of taxol and its major human metabolite 6 alpha-hydroxytaxol. Cancer Chemother Pharmacol 36:129–135

    Article  PubMed  CAS  Google Scholar 

  6. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK et al (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Nat Acad Sci USA 94:2031–2035

    Article  PubMed  CAS  Google Scholar 

  7. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI et al (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11:597–607

    Article  PubMed  CAS  Google Scholar 

  8. Soyama A, Saito Y, Hanioka N, Murayama N, Nakajima O, Katori N et al (2001) Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol Pharm Bull 24:1427–1430

    Article  PubMed  CAS  Google Scholar 

  9. Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, Kanamori Y et al (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 297:1137–1143

    PubMed  CAS  Google Scholar 

  10. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI et al (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199

    Article  PubMed  CAS  Google Scholar 

  11. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 97:3473–3478

    Article  PubMed  CAS  Google Scholar 

  12. Marsh S (2006) Taxane pharmacogenetics. Pers Med 3:33–43

    Article  CAS  Google Scholar 

  13. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 116:824–829

    Article  PubMed  CAS  Google Scholar 

  14. McFadyen MC, Cruickshank ME, Miller ID, McLeod HL, Melvin WT, Haites NE et al (2001) Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br J Cancer 85:242–246

    Article  PubMed  CAS  Google Scholar 

  15. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R (2007) Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: The Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol 25:4528–4535

    Article  PubMed  CAS  Google Scholar 

  16. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K et al (2007) Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 81:76–82

    Article  PubMed  CAS  Google Scholar 

  17. Hopper-Borge E, Chen ZS, Shchaveleva I, Belinsky MG, Kruh GD (2004) Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 64:4927–4930

    Article  PubMed  CAS  Google Scholar 

  18. McFadyen MCE, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI (2001) Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 62:207–212

    Article  PubMed  CAS  Google Scholar 

  19. Gréen H, Soderkvist P, Rosenberg P, Horvath G, Peterson C (2006) mdr-1 Single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin Cancer Res 12:854–859

    Article  PubMed  Google Scholar 

  20. Gréen H, Soderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA et al (2009) Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 104:130–137

    Article  PubMed  Google Scholar 

  21. Gréen H, Soderkvist P, Rosenberg P, Horvath G, Peterson C (2008) ABCB1 G1199A polymorphism and ovarian cancer response to paclitaxel. J Pharm Sci 97:2045–2048

    Article  PubMed  Google Scholar 

  22. Bergmann TK, Brasch-Andersen C, Gréen H, Mirza M, Pedersen RS, Nielsen F et al. (2010) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J. doi:10.1038/tpj.2010.19

  23. Nakajima M, Fujiki Y, Kyo S, Kanaya T, Nakamura M, Maida Y et al (2005) Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J Clin Pharmacol 45:674–682

    Article  PubMed  CAS  Google Scholar 

  24. Sissung TM, Mross K, Steinberg SM, Behringer D, Figg WD, Sparreboom A et al (2006) Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur J Cancer 42:2893–2896

    Article  PubMed  CAS  Google Scholar 

  25. Johnatty SE, Beesley J, Paul J, Fereday S, Spurdle AB, Webb PM et al (2008) ABCB1 (MDR 1) polymorphisms and progression-free survival among women with ovarian cancer following paclitaxel/carboplatin chemotherapy. Clin Cancer Res 14:5594–5601

    Article  PubMed  CAS  Google Scholar 

  26. Gehrmann M, Schmidt M, Brase JC, Roos P, Hengstler JG (2008) Prediction of paclitaxel resistance in breast cancer: is CYP1B1*3 a new factor of influence? Pharmacogenomics 9:969–974

    Article  PubMed  Google Scholar 

  27. Marsh S, Somlo G, McLeod HL, Li X, Frankel P, King CR et al (2005) Pharmacogenetic analysis of paclitaxel in breast cancer. J Clin Oncol (Meeting Abstracts) 23:3058

    Google Scholar 

  28. Vach W, Bergmann TK, Brosen K (2008) No evidence for taxane/platinum pharmacogenetic markers: just lack of power? J Clin Oncol 26:1903–1904

    Article  PubMed  Google Scholar 

  29. Branford RA, Pantelidis P, Ross JR (2008) Ethnic considerations in pharmacogenetic studies. J Clin Oncol 26:1766–1767

    Article  PubMed  Google Scholar 

  30. Maitland ML, Ratain MJ, Cox NJ (2007) Interpreting P values in pharmacogenetic studies: a call for process and perspective. J Clin Oncol 25:4513–4515

    Article  PubMed  Google Scholar 

  31. Leskela S, Jara C, Leandro-Garcia LJ, Martinez A, et al (2010) Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J. doi:10.1038/tpj.2010.13

Download references

Acknowledgments

We wish to acknowledge the AGO Ovarian Cancer study group in Wiesbaden, Germany, and The Nordic Society of Gynecologic Oncology, Clinical Trial Unit, Odense, Denmark, for making available the clinical data from the AGO-OVAR-9 study and the NSGO-OC9804 (TEC) study. We wish to acknowledge the work and invaluable help of lab technicians Ingrid Jakobsen Falk and Karin Skoglund in Linköping and Pernille Jordan in Odense. The work was financially supported by grants from the European Commission (CHEMORESLSHC-CT-2007-037665), the Swedish Cancer Society, the Swedish Medical Society–Linköping branch, the County Council in Östergötland, the Danish Ministry of Interior Affairs and Health (2001–2007) (J.nr 2006-12103-276), the Danish Research Agency (J.nr 271-05-0266), Borgholm Rotary Club, Sweden, and Roche Denmark, Hvidovre, Denmark.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troels K. Bergmann.

Additional information

Henrik Gréen and Troels K. Bergmann contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, T.K., Gréen, H., Brasch-Andersen, C. et al. Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J Clin Pharmacol 67, 693–700 (2011). https://doi.org/10.1007/s00228-011-1007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1007-6

Keywords

Navigation