Skip to main content
Log in

Inter-specific niche partitioning and overlap in albatrosses and petrels: dietary divergence and the role of fishing discards

Marine Biology Aims and scope Submit manuscript

Abstract

Although fisheries discards are recognized as a key food source for many seabirds, there have been few thorough assessments of their importance relative to natural prey, and of their influence on the trophic structure of pelagic seabird communities during the non-breeding period. Competition for resources in Procellariiformes appears to be reduced mainly by avoiding spatial overlap, which is supposed to influence diet composition. However, artificial food sources provided by fisheries might relax niche partitioning, increasing trophic niche overlap. Using bycaught birds from pelagic longline fisheries, we combined the conventional diet and stable isotope analyses to assess the importance of fishing discards in the diet of eight species of Procellariiformes. Both methods revealed the high contribution of trawl discards to the non-breeding diet of three neritic species and a moderate contribution in several other species; discards from pelagic and demersal longline fisheries were considerably less important. There was a clear contrast in diets of neritic vs. oceanic species, which are closely related taxonomically, but segregate at sea. Niche partitioning was less clear among neritic species. They showed an unexpectedly high level of diet overlap, presumably related to the large volume of trawl discards available. This is the first study combining the conventional diet and stable isotope analyses to quantify the importance of fishery discards for a community of non-breeding seabirds, and demonstrates how the super-abundance of supplementary food generates high levels of overlap in diets and allows the coexistence of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson O, Small C, Croxall J et al (2011) Global seabird bycatch in longline fisheries. Endanger Species Res 14:91–106

    Article  Google Scholar 

  • Arata J, Robertson G, Valencia J, Xavier JC, Moreno CA (2004) Diet of grey-headed albatrosses at the Diego Ramírez Islands, Chile: ecological implications. Antarct Sci 16:263–275

    Article  Google Scholar 

  • Barrett RT, Camphuysen KC, Anker-Nilssen T et al (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691

    Article  Google Scholar 

  • Bodey TW, Ward EJ, Phillips RA, McGill RA, Bearhop S (2014) Species versus guild level differentiation revealed across the annual cycle by isotopic niche examination. J Anim Ecol 83:470–478

    Article  Google Scholar 

  • Bond AL, Diamond AW (2011) Recent bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21:1017–1023

    Article  Google Scholar 

  • Bond AL, Jones IL (2009) A practical introduction to stable-isotope analysis for seabird biologists: approaches, cautions and caveats. Mar Ornithol 37:183–188

    Google Scholar 

  • Brooke MdL (2004) The food consumption of the world’s seabirds. Proc R Soc Lond B Biol Sci 271:S246–S248

    Article  Google Scholar 

  • Bugoni L, Mancini PL, Monteiro DS, Nascimento L, Neves TS (2008) Seabird bycatch in the Brazilian pelagic longline fishery and a review of capture rates in the southwestern Atlantic Ocean. Endanger Species Res 5:137–147

    Article  Google Scholar 

  • Bugoni L, D’Alba L, Furness R (2009) Marine habitat use of wintering spectacled petrels Procellaria conspicillata, and overlap with longline fishery. Mar Ecol Prog Ser 374:273–285

    Article  Google Scholar 

  • Bugoni L, McGill RAR, Furness RW (2010) The importance of pelagic longline fishery discards for a seabird community determined through stable isotope analysis. J Exp Mar Biol Ecol 391:190–200

    Article  Google Scholar 

  • Casaux R, Favero M, Barrera-Oro E, Silva P (1995) Feeding trial on an Imperial Cormorant Phalacrocorax atriceps: preliminary results on fish intake and otolith digestion. Mar Ornithol 23:101–106

    Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Ceia FR, Phillips RA, Ramos JA et al (2012) Short-and long-term consistency in the foraging niche of wandering albatrosses. Mar Biol 159:1581–1591

    Article  Google Scholar 

  • Cherel Y, Klages N (1998) A review of the food of albatrosses. In: Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty & Sons, Chipping Norton, pp 113–136

    Google Scholar 

  • Cherel Y, Weimerskirch H, Trouvé C (2002) Dietary evidence for spatial foraging segregation in sympatric albatrosses (Diomedea spp.) rearing chicks at Iles Nuageuses, Kerguelen. Mar Biol 141:1117–1129

    Article  Google Scholar 

  • Cherel Y, Jaeger A, Alderman R et al (2013) A comprehensive isotopic investigation of habitat preferences in nonbreeding albatrosses from the Southern Ocean. Ecography 36:277–286

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER version 6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Colabuono FI, Vooren CM (2007) Diet of black-browed Thalassarche melanophrys and Atlantic yellow-nosed T. chlororhynchos albatrosses and White-chinned Procellaria aequinoctialis and spectacled P. conspicillata petrels off southern Brazil. Mar Ornithol 35:9–20

    Google Scholar 

  • Colabuono FI, Barquete V, Taniguchi S, Ryan PG, Montone RC (2014) Stable isotopes of carbon and nitrogen in the study of organochlorine contaminants in albatrosses and petrels. Mar Pollut Bull 83:241–247

    Article  CAS  Google Scholar 

  • Connan M, McQuaid CD, Bonnevie BT, Smale MJ, Cherel Y, Klages N (2014) Combined stomach content, lipid and stable isotope analyses reveal spatial and trophic partitioning among three sympatric albatrosses from the Southern Ocean. Mar Ecol Prog Ser 497:259–272

    Article  CAS  Google Scholar 

  • Conners MG, Hazen EL, Costa DP, Shaffer SA (2015) Shadowed by scale: subtle behavioral niche partitioning in two sympatric, tropical breeding albatross species. Mov Ecol 3:1–20

    Article  Google Scholar 

  • Crec’Hriou R, Zintzen V, Moore L, Roberts C (2015) Length–weight relationships of 33 fish species from New Zealand. J Appl Ichthyol 31:558–561

    Article  Google Scholar 

  • Croxall J, Prince P (1996) Cephalopods as prey. I. Seabirds. Philos Trans R Soc Lond B Biol Sci 351:1023–1043

    Article  Google Scholar 

  • Cuthbert RJ, Phillips RA, Ryan PG (2003) Separating the Tristan albatross and the wandering albatross using morphometric measurements. Waterbirds 26:338–344

    Article  Google Scholar 

  • Cuthbert R, Hilton G, Ryan P, Tuck GN (2005) At-sea distribution of breeding Tristan albatrosses Diomedea dabbenena and potential interactions with pelagic longline fishing in the South Atlantic Ocean. Biol Conserv 121:345–355

    Article  Google Scholar 

  • Favero M, Blanco G, García G et al (2011) Seabird mortality associated with ice trawlers in the Patagonian shelf: effect of discards on the occurrence of interactions with fishing gear. Anim Conserv 14:131–139

    Article  Google Scholar 

  • Favero M, Blanco G, Copello S et al (2013) Seabird bycatch in the argentinean demersal longline fishery, 2001–2010. Endanger Species Res 19:187–199

    Article  Google Scholar 

  • Figueroa DE, Ehrlich M (2006) Systematics and distribution of leptocephali in the western South Atlantic. Bull Mar Sci 78:227–242

    Google Scholar 

  • Frere E, Quintana F, Gandini P, Wilson RP (2008) Foraging behaviour and habitat partitioning of two sympatric cormorants in Patagonia, Argentina. Ibis 150:558–564

    Article  Google Scholar 

  • Furness BL, Laugksch R, Duffy DC (1984) Cephalopod beaks and studies of seabird diets. Auk 101:619–620

    Google Scholar 

  • García ML, Jaureguizar AJ, Protogino LC (2010) From fresh water to the slope: fish community ecology in the Río de la Plata and the sea beyond. Lat Am J Aquat Res 38:81–94

    Article  Google Scholar 

  • Garthe S (1997) Influence of hydrography, fishing activity, and colony location on summer seabird distribution in the south-eastern North Sea. ICES J Mar Sci 54:566–577

    Article  Google Scholar 

  • Garthe S, Camphuysen K, Furness RW (1996) Amounts of discards by commercial fisheries and their significance as food for seabirds in the North Sea. Mar Ecol Prog Ser 136:1–11

    Article  Google Scholar 

  • Ginn H, Melville D (1983) Moult in birds. BTO Guide 19. British Trust for Ornithology, Tring

  • González-Zevallos D, Yorio P (2011) Consumption of discards and interactions between black-browed albatrosses (Thalassarche melanophrys) and kelp gulls (Larus dominicanus) at trawl fisheries in Golfo San Jorge, Argentina. J Ornithol 152:827–838

    Article  Google Scholar 

  • González-Zevallos D, Kuba L, Gosztonyi AE (2010) Estimación de la longitud utilizando relaciones morfométricas de huesos del cráneo, cintura escapular, otolitos y medidas específicas del cuerpo en Merluccius hubbsi en aguas patagónicas. Rev Biol Mar Oceanogr 45:341–345

    Article  Google Scholar 

  • Hobson KA, Cherel Y (2006) Isotopic reconstruction of marine food webs using cephalopod beaks: new insight from captively raised Sepia officinalis. Can J Zool 84:766–770

    Article  Google Scholar 

  • Huang H-W (2011) Bycatch of high sea longline fisheries and measures taken by Taiwan: actions and challenges. Mar Policy 35:712–720

    Article  Google Scholar 

  • Hudson A, Furness R (1988) Utilization of discarded fish by scavenging seabirds behind whitefish trawlers in Shetland. J Zool 215:151–166

    Article  Google Scholar 

  • Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602

    Article  Google Scholar 

  • Jaeger A, Connan M, Richard P, Cherel Y (2010) Use of stable isotopes to quantify seasonal changes of trophic niche and levels of population and individual specialisation in seabirds. Mar Ecol Prog Ser 401:269–277

    Article  CAS  Google Scholar 

  • Jiménez S, Abreu M, Pons M, Ortiz M, Domingo A (2010) Assessing the impact of the pelagic longline fishery on albatrosses and petrels in the southwest Atlantic. Aquat Living Resour 23:49–64

    Article  Google Scholar 

  • Jiménez S, Domingo A, Abreu M, Brazeiro A (2011) Structure of the seabird assemblage associated with pelagic longline vessels in the southwestern Atlantic: implications for bycatch. Endanger Species Res 15:241–254

    Article  Google Scholar 

  • Jiménez S, Domingo A, Abreu M, Brazeiro A (2012) Bycatch susceptibility in pelagic longline fisheries: are albatrosses affected by the diving behaviour of medium-sized petrels? Aquat Conserv 22:436–445

    Article  Google Scholar 

  • Jiménez S, Phillips RA, Brazeiro A, Defeo O, Domingo A (2014) Bycatch of great albatrosses in pelagic longline fisheries in the southwest Atlantic: contributing factors and implications for management. Biol Conserv 171:9–20

    Article  Google Scholar 

  • Jiménez S, Domingo A, Brazeiro A, Defeo O, Phillips RA (2015a) Marine debris ingestion by albatrosses in the southwest Atlantic Ocean. Mar Pollut Bull 96:149–154

    Article  Google Scholar 

  • Jiménez S, Marquez A, Abreu M, Forselledo R, Pereira A, Domingo A (2015b) Molecular analysis suggests the occurrence of Shy Albatross in the south-western Atlantic Ocean and its by-catch in longline fishing. Emu 115:58–62

    Google Scholar 

  • Jiménez S, Pin O, Domingo A (2015c) Plan de Acción Nacional para Reducir la Captura Incidental de Aves Marinas en las Pesquerías Uruguayas. In: Domingo A, Forselledo R, Jiménez S (eds) Revisión de Planes de Acción Nacional para la Conservación de Aves Marinas y Condrictios en las Pesquerías Uruguayas. Montevideo, Dirección Nacional de Recursos Acuáticos, pp 11–79

    Google Scholar 

  • Jiménez S, Domingo A, Brazeiro A et al (2016) Sex-related variation in the vulnerability of wandering albatrosses to pelagic longline fleets. Anim Conserv 19:281–295

    Article  Google Scholar 

  • Karnovsky NJ, Hobson KA, Iverson SJ (2012) From lavage to lipids: estimating diets of seabirds. Mar Ecol Prog Ser 451:263–284

    Article  CAS  Google Scholar 

  • Karpouzi VS, Watson R, Pauly D (2007) Modelling and mapping resource overlap between seabirds and fisheries on a global scale: a preliminary assessment. Mar Ecol Prog Ser 343:87–99

    Article  Google Scholar 

  • Kelleher K (2005) Discards in the world’s marine fisheries: an update. FAO, Rome

    Google Scholar 

  • Lewis R, O’Connell TC, Lewis M, Campagna C, Hoelzel AR (2006) Sex-specific foraging strategies and resource partitioning in the southern elephant seal (Mirounga leonina). Proc R Soc Lond B Biol Sci 273:2901–2907

    Article  Google Scholar 

  • Mariano-Jelicich R, Copello S, Pon JPS, Favero M (2014) Contribution of fishery discards to the diet of the Black-browed albatross (Thalassarche melanophris) during the non-breeding season: an assessment through stable isotope analysis. Mar Biol 161:119–129

    Article  Google Scholar 

  • Montevecchi WA (2002) Interactions between fisheries and seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 527–557

    Google Scholar 

  • Moore PJ, Bettany SM (2005) Band recoveries of southern royal albatrosses (Diomedea epomophora) from Campbell Island, 1943–2003. Notornis 52:195–205

    Google Scholar 

  • Morley S, Belchier M (2002) Otolith and body size relationships in bigeye grenadier (Macrourus holotrachys) in CCAMLR subarea 48.3. CCAMLR Sci 9:133–143

    Google Scholar 

  • Navarro J, Forero MG, González-Solís J, Igual JM, Bécares J, Hobson KA (2009a) Foraging segregation between two closely related shearwaters breeding in sympatry. Biol Lett 5:545–548

    Article  Google Scholar 

  • Navarro J, Louzao M, Igual J et al (2009b) Seasonal changes in the diet of a critically endangered seabird and the importance of trawling discards. Mar Biol 156:2571–2578

    Article  Google Scholar 

  • Nicholls DG, Robertson CJR, Prince PA, Murray MD, Walker KJ, Elliott GP (2002) Foraging niches of three Diomedea albatrosses. Mar Ecol Prog Ser 231:269–277

    Article  Google Scholar 

  • Oro D, Jover L, Ruiz X (1996) Influence of trawling activity on the breeding ecology of a threatened seabird, audouin’s gull Larus audouinii. Mar Ecol Prog Ser 139:19–29

    Article  Google Scholar 

  • Oro D, Ruiz X, Jover L, Pedrocchi V, Gonzalez-Solis J (1997) Audouin’s gull diet and adult time budget responses on changes in food availability induced by commercial fisheries. Ibis 139:631–637

    Article  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Article  Google Scholar 

  • Phillips RA, Silk JRD, Croxall JP, Afanasyev V (2006) Year-round distribution of white-chinned petrels from South Georgia: relationships with oceanography and fisheries. Biol Conserv 129:336–347

    Article  Google Scholar 

  • Phillips RA, Croxall JP, Silk JRD, Briggs DR (2008) Foraging ecology of albatrosses and petrels from South Georgia: two decades of insights from tracking technologies. Aquat Conserv 17:S6–S21

    Article  Google Scholar 

  • Phillips RA, Bearhop S, McGill RAR, Dawson DA (2009) Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia 160:795–806

    Article  Google Scholar 

  • Quillfeldt P, Masello JF, Navarro J, Phillips RA (2013) Year-round distribution suggests spatial segregation of two small petrel species in the South Atlantic. J Biogeogr 40:430–441

    Article  Google Scholar 

  • Reid K (1995) The diet of Antarctic fur seals (Arctocephalus gazella Peters 1875) during winter at South Georgia. Antarct Sci 7:241–249

    Article  Google Scholar 

  • Reid K (1996) A guide to the use of otoliths in the study of predators at South Georgia. British Antarctic Survey, Cambridge

    Google Scholar 

  • Reid TA, Wanless RM, Hilton GM, Phillips RA, Ryan PG (2013) Foraging range and habitat associations of non-breeding Tristan albatrosses: overlap with fisheries and implications for conservation. Endang Species Res 22:39–49

    Article  Google Scholar 

  • Rossi-Wongtschowski CLDB, Siliprandi CC, Brenha MR, Gonsales SdA, Santificetur C, Vaz-dos-Santos AM (2014) Atlas of marine bony fish otoliths (Sagittae) of Southeastern-Southern Brazil Part I: gadiformes (Macrouridae, Moridae, Bregmacerotidae, Phycidae and Merlucciidae); Part II: Perciformes (Carangidae, Sciaenidae, Scombridae and Serranidae). Br J Oceanogr 62:1–103

    Article  Google Scholar 

  • Ryan P, Moloney C (1988) Effect of trawling on bird and seal distributions in the southern Benguela region. Mar Ecol Prog Ser 45:1–11

    Article  Google Scholar 

  • Sacau M, Pierce GJ, Wang J, Arkhipkin AI et al (2005) The spatio-temporal pattern of Argentine shortfin squid Illex argentinus abundance in the southwest Atlantic. Aquat Living Resour 18:361–372

    Article  Google Scholar 

  • Saporiti F, Bearhop S, Vales D, Silva L, Zenteno L, Tavares M, Crespo E, Cardona L (2015) Latitudinal changes in the structure of marine food webs in the southwestern Atlantic Ocean. Mar Ecol Prog Ser 538:23–34

    Article  CAS  Google Scholar 

  • Seco Pon JP (2014) Asociación de aves marinas pelágicas a la flota argentina de arrastre de altura: caracterización integral de las interacciones y desarrollo de una estrategia de conservación para especies con estado de conservación amenazado. PhD dissertation, Universidad Nacional de Mar del Plata, Mar del Plata

  • Spear LB, Ainley DG, Walker WA (2007) Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud Avian Biol 35:1–99

    Google Scholar 

  • Vaske Júnior T (2011) Are deep-sea cephalopods really common preys for oceanic seabirds? Biota Neotrop 11:177–180

    Article  Google Scholar 

  • Volpedo AV, Echeverría DD (2000) Catálogo y claves de otolitos para la identificación de peces del Mar Argentino. Editorial Dunken, Buenos Aires

    Google Scholar 

  • Waessle JA, Lasta CA, Favero M (2003) Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35–36 S). Sci Mar 67:233–240

  • Waugh SM, Weimerskirch H (2003) Environmental heterogeneity and the evolution of foraging behaviour in long ranging greater albatrosses. Oikos 103:374–384

    Article  Google Scholar 

  • Wöhler OC (1997) Crecimiento y mortalidad de la castañeta Cheilodactylus bergi en la zona común de pesca Argentino-Uruguaya. INIDEP Informe Técnico 16, Mar del Plata

  • Xavier JC, Cherel Y (2009) Cephalopod beak guide for the Southern Ocean. British Antarctic Survey, Cambridge

    Google Scholar 

  • Xavier J, Croxall J, Trathan P, Rodhouse P (2003) Inter-annual variation in the cephalopod component of the diet of the wandering albatross, Diomedea exulans, breeding at Bird Island, South Georgia. Mar Biol 142:611–622

    Article  Google Scholar 

  • Xavier JC, Trathan PN, Croxall JP, Wood AG, Podestá G, Rodhouse PG (2004) Foraging ecology and interactions with fisheries of wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fish Oceanogr 13:324–344

    Article  Google Scholar 

  • Xavier JC, Phillips RA, Cherel Y (2011) Cephalopods in marine predator diet assessments: why identifying upper and lower beaks is important. ICES J Mar Sci 68:1857–1864

    Article  Google Scholar 

  • Xavier JC, Cherel Y, Roberts J, Piatkowski U (2013) How do cephalopods become available to seabirds: can fish gut contents from tuna fishing vessels be a major food source of deep-dwelling cephalopods? ICES J Mar Sci 70:46–49

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the observers of the Programa Nacional de Observadores de la Flota Atunera Uruguaya (PNOFA). Special thanks to Martin Abreu and Rodrigo Forselledo for their invaluable cooperation in the examination of bycaught seabirds at the laboratory. Thanks also to María Salhi for the help with lipid extraction. We would also like to thank two reviewers and the handling editor for helpful comments. SJ gratefully acknowledges the support by Graham Robertson, the British Embassy (Montevideo), and the Agreement on the Conservation of Albatrosses and Petrels of three study visits to British Antarctic Survey where some of this work was carried out. SIA was partially funded by Dirección Nacional de Recursos Acuáticos (DINARA). JX was supported by the research programs CEPH, SCAR AnT-ERA, SCAR EGBAMM, and ICED and by the Investigator FCT programme (IF/00616/2013). This paper is part of the Ph.D. thesis of SJ, who received a Ph.D. scholarship from Agencia Nacional de Investigación e Innovación (ANII) and a support scholarship for the completion of postgraduate studies from Comisión Académica de Posgrado (CAP).

Author information

Authors and Affiliations

Authors

Contributions

SJ and RAP determined the basis for the paper, with contributions of AD, OD, and AB. SJ, JX, MV, and MIL undertook the laboratory work. SJ undertook all the analyses. SJ wrote the first draft with the contribution of RAP. JX, OD, AB, and AD contributed to subsequent drafts.

Corresponding author

Correspondence to Sebastián Jiménez.

Ethics declarations

Funding

This study was funded in part by Dirección Nacional de Recursos Acuáticos (DINARA), Agencia Nacional de Investigación e Innovación (ANII) and Comisión Académica de Posgrado (CAP).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: V. H. Paiva.

Reviewed by G. S. Blanco, J. M. Pereira and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, S., Xavier, J.C., Domingo, A. et al. Inter-specific niche partitioning and overlap in albatrosses and petrels: dietary divergence and the role of fishing discards. Mar Biol 164, 174 (2017). https://doi.org/10.1007/s00227-017-3205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3205-y

Navigation