Skip to main content

Advertisement

Log in

Reduced n-3 highly unsaturated fatty acids dietary content expected with global change reduces the metabolic capacity of the golden grey mullet

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In this study, we hypothesised that a reduction in n-3 HUFA availability for higher consumers, as expected with global change, would negatively impact the physiological performances of fish. The aim was to experimentally evaluate the effect of n-3 HUFA dietary content on cardio-respiratory performances of the golden grey mullet (Liza aurata), a microalgae grazer of high ecological importance in European coastal areas. These performances were evaluated in terms of critical swimming speed U crit, associated oxygen consumption MO2, post-exercise oxygen consumption and calcium fluxes in cardiomyocytes. Two replicated groups of fish were fed on a rich (standard diet, SD diet: 1.2 % n-3 HUFA on dry matter basis, DMB) or a poor n-3 HUFA (low n-3 HUFA diet, LD diet: 0.2 % n-3 HUFA on DMB) diet during 5 months and were called SD and LD groups, respectively. The results showed that the LD diet reduced growth rate as well as the aerobic capacity of L. aurata at 20 °C, suggesting that fish may have to save energy by modifying the proportion of energy allocated to energy-demanding activities, such as digestion or feeding. In addition, this LD diet induced higher levels of haematocrit and plasma osmolality, indicating a stress response at the second and third levels in that group. However, the LD diet caused a massive increase in swimming efficiency. This should improve the capacity of L. aurata to migrate and to forage over a wide area. In turn, these could then compensate for the reduction in growth rate and aerobic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AOAC Association of Official Analytical Chemists (1984) Official methods of analysis. Association of analytical chemists 1, pp 1141

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Beamish FWH (1964) Influence of starvation on standard and routine oxygen consumption. Trans Am Fish Soc 93:103–107. doi:10.1577/1548-8659(1964)93[103:IOSOSA]2.0.CO;2

  • Bell JG, Ashton I, Secombes CJ et al (1996) Dietary lipid affects phospholipid fatty acid compositions, eicosanoid production and immune function in Atlantic salmon (Salmo salar). Prostag Leukotr ESS 54:173–182. doi:10.1016/S0952-3278(96)90013-7

    Article  CAS  Google Scholar 

  • Benedito-Palos L, Navarro JC, Kaushik S, Perez-Sanchez J (2010) Tissue-specific robustness of fatty acid signatures in cultured gilthead sea bream (Sparus aurata L.) fed practical diets with a combined high replacement of fish meal and fish oil. J Anim Sci 88:1759–1770. doi:10.2527/jas.2009-2564

    Article  CAS  Google Scholar 

  • Béthoux J, Gentili B, Tailliez D (1998) Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect. Geophys Res Lett 25:1023–1026. doi:10.1029/98GL00724

    Article  Google Scholar 

  • Böhm M, Schultz S, Koussoroplis A-M, Kainz MJ (2014) Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L.). PLoS ONE 9:e94759. doi:10.1371/journal.pone.0094759

    Article  Google Scholar 

  • Brett JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21:1183–1226

    Article  Google Scholar 

  • Chatelier A (2006) Associations between tissue fatty acid composition and physiological traits of performance and metabolism in the seabass (Dicentrarchus labrax). J Exp Biol 209:3429–3439. doi:10.1242/jeb.02347

    Article  CAS  Google Scholar 

  • Chatelier A, Imbert N, Infante JLZ et al (2006) Effects of oleic acid on the high threshold barium current in seabass Dicentrarchus labrax ventricular myocytes. J Exp Biol 209:4033–4039. doi:10.1242/jeb.02470

    Article  CAS  Google Scholar 

  • Chen Y-C (2012) The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chem 131:211–219. doi:10.1016/j.foodchem.2011.08.062

    Article  CAS  Google Scholar 

  • Claireaux G, Lefrancois C (2007) Linking environmental variability and fish performance: integration through the concept of scope for activity. Philos Trans R Soc B Biol Sci 362:2031–2041. doi:10.1098/rstb.2007.2099

    Article  Google Scholar 

  • Claireaux G, McKenzie DJ, Genge AG, Chatelier A, Aubin J, Farrell T (2005) Linking swimming performance cardiac pumping ability and cardiac anatomy in rainbow trout. J Exp Biol 208:1775–1784

    Article  Google Scholar 

  • Crawford MA, Broadhurst CL (2012) The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability. Nutr Health 21:17–39. doi:10.1177/0260106012437550

    Article  CAS  Google Scholar 

  • Crockett EL (2008) The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review. J Comp Physiol B 178:795–809. doi:10.1007/s00360-008-0275-7

    Article  CAS  Google Scholar 

  • Domenici P, Herbert NA, Lefrançois C, Steffensen JF, McKenzie DJ (2013) The effect of hypoxia on fish swimming performance and behaviour. Swimming Physiology of Fish. Springer, Berlin, pp 129–159

    Google Scholar 

  • Dosanjh BS, Higgs DA, McKenzie DJ, Randall DJ, Eales JG, Rowshandeli N, Rowshandeli M, Deacon G (1998) Influence of dietary blends of menhaden oil and canola oil on growth muscle lipid composition and thyroidal status of Atlantic salmon (Salmo salar) in sea water. Fish Physiol Biochem 19:123–134

    Article  CAS  Google Scholar 

  • Egginton S (1996) Effect of temperature on optimal substrate for β-oxidation. J Fish Biol 49:753–758

    CAS  Google Scholar 

  • Farrell AP (2002) Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishes. Comp Biochem Physiol A 132:797–810

    Article  CAS  Google Scholar 

  • Fischmeister R, Horackova M (1983) Variation of intracellular Ca2+ following Ca2+ current in heart A theoretical study of ionic diffusion inside a cylindrical cell. Biophys J 41:341–348

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Fry FE (1947) Effects of the environment on animal activity. University of Toronto Studies Biological Series 55 Publication of the Ontario Fisheries Research Laboratory 68:1–62

  • Fry FE (1971) The effect of environmental factors on the physiology of fish. Hoar & Randall Fish physiology VI. Academic Press, London, pp 1–98

    Google Scholar 

  • Fulton TW (1904) The rate of growth of fishes 22nd Annual Report of the Fishery Board of Scotland 3, pp 141–241

  • Galli G, Shiels H, Brill R (2009) Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares) big eye tuna (T. obesus) mahi mahi (Coryphae nahippurus) and swordfish (Xiphias gladius). Physiol Biochem Zool 82:280–290

    Article  Google Scholar 

  • Girotti AW (1985) Mechanisms of lipid peroxidation. J Free Rad Biol Med 1:87–95

    Article  CAS  Google Scholar 

  • Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult 1:71–124

    Article  Google Scholar 

  • Goffart A, Hecq JH, Legendre L (2002) Changes in the development of the winter-spring phytoplankton bloom in the Bay of Calvi (NW Mediterranean) over the last two decades: a response to changing climate? Mar Ecol Prog Ser 236:45–60

    Article  Google Scholar 

  • Gomez F, Souissi S (2008) The impact of the 2003 summer heat wave and the 2005 late cold wave on the phytoplankton in the north-eastern English Channel. Comptes Rendus Biol 331(9):678–685

    Article  Google Scholar 

  • Graham MS, Farrell AP (1989) The effect of temperature acclimation and adrenaline on the performance of a perfused trout heart. Physiol Zool 62:38–61

    Google Scholar 

  • Guderley H, Kraffe E, Bureau W, Bureau DP (2008) Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle. J Comp Physiol B 178:385–399. doi:10.1007/s00360-007-0231-y

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, New York, p 377

    Google Scholar 

  • Gypens N, Lacroix G, Lancelot C (2007) Causes of variability in diatom and Phaeocystis blooms in Belgian coastal waters between 1989 and 2003: a model study. J Sea Res 57:19–35. doi:10.1016/j.seares.2006.07.004

    Article  Google Scholar 

  • Henderson RJ, Sargent JR (1985) Chain-length specificities of mitochondrial and peroxisomal β-oxidation of fatty acids in livers of rainbow trout (Salmo gairdneri). Comp Biochem Physiol B 82:79–85

    CAS  Google Scholar 

  • Hove-Madsen L, Llach A, Tort L (1998) Quantification of Ca2+ uptake in the sarcoplasmic reticulum of trout ventricular myocytes. Am J Physiol 275:2070–2080

    Google Scholar 

  • Imbert-Auvray N, Mercier C, Bois P (2013) Sarcoplasmic reticulum: a key factor in cardiac contractility of sea bass Dicentrarchus labrax and common sole Solea solea during thermal acclimations. J Comp Physiol B 183(4):477–489

    Article  CAS  Google Scholar 

  • Jobling M (2001) Nutrient partitioning and the influence of feed composition on body composition. In: Houlihan D, Boujard Jobling M (eds) Food intake in fish. Blackwell Scientific, Oxford, pp 354–375

  • Juaneda P, Roquelin G (1985) Rapid and convenient separation of phospholipids and non-phosphorus lipids from rat heart using silica cartridges. Lipids 20:40–41

    Article  CAS  Google Scholar 

  • Kalogeropoulos N, Alexis MN, Henderson RJ (1992) Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture 104:293–308

    Article  CAS  Google Scholar 

  • Kates K, Volcani BE (1966) Lipid components of diatoms. Biochem Biophys Acta 116:264–278

    Article  CAS  Google Scholar 

  • Keen JE, Viazon DM, Farrell AP, Tibbits GF (1994) Effect of temperature acclimation on the ryanodine sensitivity of the trout myocardium. J Comp Physiol B 164:438–443

    Article  CAS  Google Scholar 

  • Kim K-D, Lee S-M (2004) Requirement of dietary n-3 highly unsaturated fatty acids for juvenile flounder (Paralichthys olivaceus). Aquaculture 229:315–323. doi:10.1016/S0044-8486(03)00356-9

    Article  CAS  Google Scholar 

  • Kjaer MA, Vegusdal A, Gjoen T, Rustan AC, Todorcevic M, Ruyter B (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochem Biophys Acta 1781:112–122

    CAS  Google Scholar 

  • Lee SM, Cho SH (2009) Influences of dietary fatty acid profile on growth body composition and blood chemistry in juvenile fat cod (Hexagrammo usotakii Jordan and Starks). Aquacult Nutr 15:19–28

    Article  CAS  Google Scholar 

  • Lee CG, Farrell AP, Lotto A, Hinch SG, Healey MC (2003a) Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J Exp Biol 206:3253–3260. doi:10.1242/jeb.00548

    Article  CAS  Google Scholar 

  • Lee S-M, Lee JH, Kim K-D (2003b) Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture 225:269–281. doi:10.1016/S0044-8486(03)00295-3

    Article  CAS  Google Scholar 

  • Leu E, Wängberg SA, Wulff A, Falk-Petersen S, Ørbæk JB, Hessen DO (2006) Effects of changes in ambient PAR and UV radiation on the nutritional quality of an Arctic diatom (Thalassiosira antarctica var borealis). J Exp Mar Biol Ecol 337(1):65–81

    Article  CAS  Google Scholar 

  • Linares F, Henderson RJ (1991) Incorporation of 14C-labelled polyunsaturated fatty acids by juvenile turbot Scophtalmus maximus (L) in vivo. J Fish Biol 38:335–347

    Article  CAS  Google Scholar 

  • Liu XW, Tan BP, Mai KS, Ai QH, Zhou QC (2007) Effects of dietary highly unsaturated fatty acids on growth and fatty acid composition of juvenile cobia (Rachycentron Canadum). Acta Hydrob Sin 31:190–195

    CAS  Google Scholar 

  • Luna-Acosta A, Lefrançois C, Millot S et al (2011) Physiological response in different strains of sea bass (Dicentrarchus labrax): swimming and aerobic metabolic capacities. Aquaculture 317:162–167. doi:10.1016/j.aquaculture.2011.03.004

  • Martinez M (2003) Condition, prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua. J Exp Biol 206:503–511. doi:10.1242/jeb.00098

    Article  CAS  Google Scholar 

  • McKenzie DJ (2001) Effects of dietary fatty acids on the respiratory and cardiovascular physiology of fish. Comp Biochem Physiol A: Mol Integr Physiol 128:605–619. doi:10.1016/S1095-6433(00)00338-X

    Article  Google Scholar 

  • McKenzie DJ, Higgs DA, Dosanjh BS, Deacon G, Randall DJ (1998) Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater. Fish Physiol Biochem 19:111–122

    Article  CAS  Google Scholar 

  • Milinkovitch T, Lucas J, Le Floch S, Thomas-Guyon H, Lefrançois C (2012) Effect of dispersed crude oil exposure upon the aerobic metabolic scope in juvenile golden grey mullet (Liza aurata). Mar Poll Bull 64(4):865–871

    Article  CAS  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Nabauer M, Ellis-Davies GC, Kaplan JH, Morad M (1989) Modulation of Ca2+ channel selectivity and cardiac contraction by photorelease of Ca2+. Am J Physiol 256:H916–H920

    CAS  Google Scholar 

  • Owens NJP, Cook D, Colebrook M, Hunt H, Reid PC (1989) Long term trends in the occurrence of Phaeocystis sp in the North-East Atlantic. J Mar Biol Assoc UK 69:813–821

    Article  Google Scholar 

  • Pahl SL, Lewis DM, Chen F, King KD (2010) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of some environmental factors. J Biosci Bioeng 109:235–239. doi:10.1016/j.jbiosc.2009.08.480

    Article  CAS  Google Scholar 

  • Paige JA, Liao RL, Hajjar RJ et al (1996) Effect of a high omega-3 fatty acid diet on cardiac contractile performance in Oncorhynchus mykiss. Cardiovasc Res 31:249–262

    Article  CAS  Google Scholar 

  • Regan MD, Kuchel LJ, Huang SSY et al (2010) The effect of dietary fish oil and poultry fat replacement with canola oil on swimming performance and metabolic response to hypoxia in stream type spring Chinook salmon parr. Aquaculture 308:183–189. doi:10.1016/j.aquaculture.2010.08.014

    Article  CAS  Google Scholar 

  • Reidy SP, Kerr SR, Nelson JA (2000) Aerobic and anaerobic swimming performance of individual Atlantic cod. J Exp Biol 203:347–357

    CAS  Google Scholar 

  • Roessler PG (1988) Effect of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptic. J Phycol 24:394–400

    Article  CAS  Google Scholar 

  • Rousseau E, Smith JS, Meissner G (1987) Ryanodine modifies conductance and gating behaviour of single Ca2+ Release channels. Am J Physiol 253:364–368

    Google Scholar 

  • Sargent JR, Tocher DR, Bell JG (2002) The lipids (Third edition). In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, London, pp 182–259

    Google Scholar 

  • Schreck CB (1982) Stress and rearing of salmonids. Aquaculture 28:241–249

    Article  Google Scholar 

  • Schurmann H, Steffensen JF (1994) Spontaneous swimming activity of Atlantic cod Gadus morhua exposed to graded hypoxia at three temperatures. J Exp Biol 197:129–142

    Google Scholar 

  • Shiels HA, Stevens ED, Farrell AP (1998) Effect of temperature adrenaline and ryanodine on power production in trout (Oncorhynchus mykiss) ventricular trabeculae. J Exp Biol 201:2701–2710

    CAS  Google Scholar 

  • Shiels HA, Blank JM, Farrell AP, Block BA (2004) Electrophysiological properties of the L-type Ca2+ current in cardiomyocytes from bluefin tuna and Pacific mackerel. Am J Physiol Reg Int Comp Physiol 286:R659–R668

    Article  CAS  Google Scholar 

  • Sidell BD, Driezic WR (1985) Relationship between cardiac energy metabolism and cardiac work demand in fishes. In: Gilles R (ed) Circulation, respiration and metabolism proceedings in life science. Springer, Berlin, pp 386–401

    Chapter  Google Scholar 

  • Thorarensen H, Gallaugher PE, Kiessling AK, Farrell AP (1993) Intestinal blood flow in swimming chinook salmon Oncorhynchus tshawytscha and the effects of haematocrit on blood flow distribution. J Exp Biol 179:115–129

  • Tirri R, Lehto H (1984) Alpha and beta adrenergic control of contraction force of perch heart (Perca fluviatilis) in vitro. Comp Biochem Physiol C 77:301–304

    Article  CAS  Google Scholar 

  • Tirri R, Ripatti P (1982) Inhibitory adrenergic control of heart rate of perch (Perca fluvialitis) in vitro. Comp Biochem Physiol C 73:399–401

    Article  CAS  Google Scholar 

  • Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732. doi:10.1111/j.1365-2109.2008.02150.x

    Article  CAS  Google Scholar 

  • Trenzado CE, Morales AE, de la Higuera M (2006) Physiological effects of crowding in rainbow trout Oncorhynchus mykiss selected for low and high stress responsiveness. Aquaculture 258:583–593

    Article  Google Scholar 

  • Trenzado CE, Morales AE, Palma JM, de la Higuera M (2009) Blood antioxidant defenses and hematological adjustments in crowded/uncrowded rainbow trout (Oncorhynchus mykiss) fed on diets with different levels of antioxidant vitamins and HUFA. Comp Biochem Physiol C 149:440–447. doi:10.1016/j.cbpc.2008.10.105

  • Turner N, Else PL, Hulbert AJ (2003) Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease states and metabolism. Naturwissenschaften 90:521–523. doi:10.1007/s00114-003-0470-z

    Article  CAS  Google Scholar 

  • Vagner M, Lefrançois C, Ferrari RS et al (2008) The effect of acute hypoxia on swimming stamina at optimal swimming speed in flathead grey mullet Mugil cephalus. Mar Biol 155:183–190. doi:10.1007/s00227-008-1016-x

    Article  Google Scholar 

  • Vornanen M (1997) Sarcolemmal Ca2+ influx through L-type Ca2+ channels in ventricular myocytes of a teleost fish. Am J Physiol Reg Int Comp Physiol 272:R1432–R1440

    CAS  Google Scholar 

  • Vornanen M (1998) L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201:533–547

    CAS  Google Scholar 

  • Wagner G, Balfry S, Higgs D et al (2004) Dietary fatty acid composition affects the repeat swimming performance of Atlantic salmon in seawater. Comp Biochem Physiol A: Mol Integr Physiol 137:567–576. doi:10.1016/j.cbpb.2003.11.005

    Article  CAS  Google Scholar 

  • Webb PW (1975) Acceleration performance of rainbow trout (Oncorhynchus mykiss). J Exp Biol 63:451–465

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    CAS  Google Scholar 

  • Yan GJ, He WK, Cao ZD, Fu SJ (2013) An interspecific comparison between morphology and swimming performance in cyprinids. J Evolution Biol 26:1802–1815

    Article  Google Scholar 

  • Zambonino-Infante JL, Claireaux G, Ernande B, Jolivet A, Quazuguel P, Severe A, Huelvan C, Mazurais M (2013) Hypoxia tolerance of common sole juveniles depends on dietary regime and temperature at the larval stage: evidence for environmental conditioning. Proc R Soc B Biol Sci 280:1471–2954

    Article  Google Scholar 

  • Zhao WW, Pang X, Peng JL, Cao ZD, Fu SJ (2012) The effects of hypoxia acclimation exercise training and fasting on swimming performance in juvenile qingbo (Spinibar bussinensis). Fish Physiol Biochem 38:1367–1377

    Article  CAS  Google Scholar 

  • Zuo R, Ai Q, Mai K et al (2012) Effects of dietary n-3 highly unsaturated fatty acids on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Fish Shellfish Immunol 32:249–258. doi:10.1016/j.fsi.2011.11.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Action Initiative of the University of La Rochelle to Marie Vagner (postdoctoral fellowship). The authors are very grateful to Andrea Satta and Fabio Antagnarelli for supplying fish, to Michel Prineau for his technical help and to David Akbar and Marie Durollet for their help with cellular analysis and microscopy.

Conflict of interest

The authors have no conflict of interest to declare and note that the sponsors of the issue had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Vagner.

Additional information

Communicated by K. Clements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vagner, M., Zambonino-Infante, JL., Mazurais, D. et al. Reduced n-3 highly unsaturated fatty acids dietary content expected with global change reduces the metabolic capacity of the golden grey mullet. Mar Biol 161, 2547–2562 (2014). https://doi.org/10.1007/s00227-014-2526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2526-3

Keywords

Navigation