Skip to main content
Log in

Hydrology influences population genetic structure and connectivity of the intertidal amphipod Corophium volutator in the northwest Atlantic

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The mechanisms driving genetic structure in marine systems are elusive due to the difficulty of identifying temporal and spatial barriers to dispersal. By studying marine invertebrate species with limited dispersal potential, genetic structure can be directly related to physical and biological factors restricting connectivity. In the northwest Atlantic, the benthic brood-rearing amphipod Corophium volutator is distributed across basins with distinct circulation patterns and has the potential to disperse passively during its adult stage. We analyzed spatial genetic variation and migration rates across C. volutator’s North American range with sequence data for mitochondrial DNA and three novel nuclear markers using frequency and coalescent-based methods. We found low genetic differentiation within basins, but strong subdivision within the Bay of Fundy and a striking biogeographic break between the Bay of Fundy and Gulf of Maine, suggesting that genetic drift may act on populations in which connectivity is restricted due to the limitation of passive dispersal by hydrological patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addison JA, Ort BS, Mesa KA, Pogson GH (2008) Range-wide genetic homogeneity in the California sea mussel (Mytilus californianus): a comparison of allozymes, nuclear DNA markers, and mitochondrial DNA sequences. Mol Ecol 17:4222–4232

    Article  CAS  Google Scholar 

  • Aretxabaleta AL, McGillicuddy DJ, Smith KW, Lynch DR (2008) Model simulations of the Bay of Fundy Gyre: 1. Climatological results. J Geophys Res. doi:10.1029/2007JC004480

    Google Scholar 

  • Ashton GV, Stevens MI, Hart MC, Green DH, Burrows MT, Cook EJ, Willis KJ (2008) Mitochondrial DNA reveals multiple Northern Hemisphere introductions of Caprella mutica (Crustacea, Amphipoda). Mol Ecol 17:1293–1303

    Article  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Barbeau MA, Grecian LA, Arnold EE, Sheahan DC, Hamilton DJ (2009) Spatial and temporal variation in the population dynamics of the intertidal amphipod Corophium volutator in the upper Bay of Fundy, Canada. J Crustac Biol 29:491–506

    Article  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22(3):341–345

    Article  CAS  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152(2):763–773

    CAS  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Quart Rev Biol 74:21–45

    Article  CAS  Google Scholar 

  • Bradbury IR, Snelgrove PVR (2001) Contrasting larval transport in demersal fish and benthic invertebrates: the roles of behaviour and advective processes in determining spatial pattern. Can J Fish Aquat Sci 58:811–823

    Article  Google Scholar 

  • Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category, and life history. Proc R Soc Biol 275:1803–1809

    Article  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Chung PP, Hyne RV, Mann RM, Ballard JWO (2011) Temporal and geographical genetic variation in the amphipod Melita plumulosa (Crustacea: Melitidae): link of a localized change in haplotype frequencies to a chemical spill. Chemosphere 82:1050–1055

    Article  CAS  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  Google Scholar 

  • Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10:2249–2262

    Article  CAS  Google Scholar 

  • Corander J, Marttinen P, Mäntyniemi S (2006) A Bayesian identification of stock mixtures from molecular marker data. Fish Bull 104:550–558

    Google Scholar 

  • Corander J, Sirén J, Arjas E (2008) Bayesian spatial modelling of genetic population structure. Comput Stat 23:111–129

    Article  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and population connectivity. Annu Rev Mar Sci 1:433–466

    Article  Google Scholar 

  • Crozier RH, Crozier YC, Mackinlay AG (1989) The COI and COII region of honeybee mitochondrial DANN: evidence for variation in insect mitochondrial evolution rates. Mol Biol Evol 6:399–411

    CAS  Google Scholar 

  • Davolos D, Maclean N (2005) Mitochondrial COI-NC-COII sequences in talitrid amphipods (Crustacea). Heredity 94:81–86

    Article  CAS  Google Scholar 

  • Desplanque C, Mossman DJ (2001) Bay of Fundy tides. Geosci Canada 28:1–11

    Google Scholar 

  • Drolet D, Barbeau MA (2009) Diel and semi-lunar cycles in the swimming activity of the intertidal, benthic amphipod Corophium volutator in the Upper Bay of Fundy, Canada. J Crust Biol 29:51–56

    Article  Google Scholar 

  • Drolet D, Bringloe TT, Coffin MRS, Barbeau MA, Hamilton DJ (2012) Potential for between-mudflat movement and metapopulations dynamics in an intertidal burrowing amphipod. MEPS 449:197–209

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN, v3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Garrett C (1972) Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature 238:441–443

    Article  Google Scholar 

  • Goldson AJ, Hughes RN, Gliddon CJ (2001) Population genetic consequences of larval dispersal mode and hydrography: a case study with bryozoans. Mar Biol 138:1037–1042

    Article  Google Scholar 

  • Grantham BA, Eckert GL, Shanks AL (2003) Dispersal potential of marine invertebrates in diverse habitats. Ecol Appl 13:108–116

    Article  Google Scholar 

  • Grosberg RK, Levitan DR, Cameron BB (1996) Characterization of genetic structure and genealogies using RAPD-PCR markers: a random primer for the novice and nervous. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies, and protocols. Wiley-Liss, New York, pp 67–100

    Google Scholar 

  • Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167–1175

    Article  Google Scholar 

  • Hengeveld R, Haeck J (1982) The distribution of abundance. 1. Measurements. J Biogeogr 9:303–316

    Article  Google Scholar 

  • Hicklin PW, Smith PC (1984) Selection of foraging sites and invertebrate prey by migrant semipalmated sandpipers, Calidris pusilla (Pallas), in Minas Basin, Bay of Fundy. Can J Zool 62:2201–2210

    Article  Google Scholar 

  • Hogg ID, Stevens MI, Schnabel KE, Chapman MA (2006) Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mtDNA analyses. Freshwater Biol 51:236–248

    Article  CAS  Google Scholar 

  • Hughes RG (1988) Dispersal by benthic invertebrates: the in situ swimming behaviour of the amphipod Corophium volutator. J Mar Biol Ass UK 68:565–579

    Article  Google Scholar 

  • Janson K (2008) Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biol J Linnean Soc 30:245–256

    Article  Google Scholar 

  • Jennings RM, Shank TM, Mullineaux LS, Halanych KM (2009) Assessment of the Cape Cod phylogeographic break using the bamboo worm Clymenella torquata reveals the role of regional water masses in dispersal. J Hered 100:86–96

    Article  CAS  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the Northeastern Pacific rocky intertidal community. PLoS ONE 5:e8594

    Article  Google Scholar 

  • Kelly DW, MacIsaac HJ, Heath DD (2006) Vicariance and dispersal effects on phylogeographic structure and speciation in a widespread estuarine invertebrate. Evolution 60:257–267

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Lawrie SM, Raffaelli DG (1998) In situ swimming behaviour of the amphipod Corophium volutator (Pallas). J Exp Mar Biol Ecol 224:237–251

    Article  Google Scholar 

  • Lee TN, Rooth C, Williams E, McGowan M, Szmant AF, Clarke ME (1992) Influence of Florida Current, gyres, and wind driven circulation on transport of larvae and recruitment in the Florida Keys coral reefs. Cont Shelf Res 12:971–1002

    Article  Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  Google Scholar 

  • Macfarlane CB, Drolet D, Barbeau MA, Hamilton DJ, Ollerhead J (2012) Dispersal of marine benthic invertebrates through ice rafting. Ecology (accepted)

  • Manning JP, McGillicuddy DJ, Pettigrew NR, Churchill JH, Incze LS (2009) Drifter observations of the Gulf of Maine Coastal current. Cont Shelf Res 29:835–845

    Article  Google Scholar 

  • Matthaeis ED, Davolos D, Cobolli M, Ketmaier V (2000) Isolation by distance in equilibrium and nonequilibrium populations of four Talitrid species in the Mediterranean Sea. Evolution 54:1606–1613

    Google Scholar 

  • Meadows PS, Tait J, Hussain SA (1990) Effects of estuarine infauna on sediment stability and particle sedimentation. Hydrobiologia 190:263–266

    Article  Google Scholar 

  • Mouritsen KN, Mouritsen LT, Jensen KT (1998) Change of topography and sediment characteristics on an intertidal mud-flat following mass-mortality of the amphipod Corophium volutator. J Mar Biol Ass UK 78:1167–1180

    Article  Google Scholar 

  • Naqvi NI, Chattoo BB (1996) Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome 39:26–30

    Article  CAS  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Ann Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial DNA: the three-times rule. Evolution 55:859–868

    Article  CAS  Google Scholar 

  • Peer DL, Linkletter LE, Hicklin PW (1986) Life history and reproductive biology of Corophium volutator (Crustacea: Amphipoda) and the influence of shorebird predation on population structure in Chignecto Bay, Bay of Fundy, Canada. Neth J Sea Res 20:359–373

    Article  Google Scholar 

  • Pettigrew NR, Churchill JH, Janzen CD, Mangum LJ, Signell RP, Thomas AC, Townsend DW, Wallinga JP, Xue H (2005) The kinematic and hydrographic structure of the Golf of Maine Coastal Current. Deep Sea Res II 52:2369–2391

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawertz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular ecology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol 6:600–602

    Article  Google Scholar 

  • Shepherd PCF, Partridge VA, Hicklin PW (1995) Changes in sediment types and invertebrate fauna in the intertidal mudflats of the Bay of Fundy between 1977 and 1994. Can Wildl Serv Technical Rep 237. Canadian Wildlife Service, Environment Canada, Ottawa

  • Shoemaker CR (1947) Further notes on the amphipod genus Corophium from the east coast of North America. Proc Wash Acad Sci 37:47–63

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographical structure of populations. Science 236:787–792

    Article  CAS  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Sprague AJ, Hamilton DJ, Diamond AW (2008) Site safety and food affect movements of semipalmated sandpipers (Calidris pusilla) migrating through the upper Bay of Fundy. Avian Conserv Ecol 3:4

    Google Scholar 

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  CAS  Google Scholar 

  • Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Teske PR, McQuaid CD, Froneman PW, Barker NP (2006) Impacts of marine biogeographic boundaries on phylogeographic patterns of three South African estuarine crustaceans. Mar Ecol Progr Ser 314:283–293

    Article  Google Scholar 

  • Teske PR, Papadopoulos I, Newman BK, Dworschak PC, McQuaid CD, Barker NP (2008) Oceanic dispersal barriers, adaptation and larval retention: an interdisciplinary assessment of potential factors maintaining a phylogeographic break between sister lineages of an African prawn. BMC Evol Biol 8:341–355

    Article  Google Scholar 

  • Watson JR, Kendall BE, Siegel DA, Mitarai S (2012) Changing seascapes, stochastic connectivity, and marine metapopulations dynamics. Am Nat 180:99–112

    Article  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc Biol Sci 277:1685–1694

    Article  Google Scholar 

  • Wilson AB, Boates JS, Snyder M (1997) Genetic isolation of populations of the gammaridean amphipod, Corophium volutator, in the Bay of Fundy, Canada. Mol Ecol 6:917–923

    Article  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  Google Scholar 

Download references

Acknowledgments

This work could not have been accomplished without samples collected by Travis Gerwing and David Drolet (University of New Brunswick). The authors wish to thank Linley Jesson (University of New Brunswick) for valuable discussion and feedback, the associate editor Cynthia Riginos, and four anonymous reviewers for their comments, which helped improve the manuscript. This work was supported by funds to the Addison laboratory from the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation, the New Brunswick Innovation Foundation, and the University of New Brunswick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Einfeldt.

Additional information

Communicated by C. Riginos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2012_2154_MOESM1_ESM.docx

Figure S1 Detection of number of clusters (k) from Structure outputs using ΔK (Evanno et al. 2005) for SUBI, nDNA, and combined data. (DOCX 43 kb)

227_2012_2154_MOESM2_ESM.docx

Figure S2 Isolation by distance analyses from IBDWS plotting genetic similarity (M) vs. log (geographic distance) across study range for a) SUBI, b) CV1 + CV2 + CV3, within East for c) SUBI, d) CV1 + CV2 + CV3, within West for e) SUBI, f) CV1 + CV2 + CV3, within Middle for g) SUBI, h) CV1 + CV2 + CV3, and within Outer for i) SUBI, j) CV1 + CV2 + CV3. (DOCX 684 kb)

Supplementary material 3 (DOCX 207 kb)

Supplementary material 4 (DOCX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einfeldt, A.L., Addison, J.A. Hydrology influences population genetic structure and connectivity of the intertidal amphipod Corophium volutator in the northwest Atlantic. Mar Biol 160, 1015–1027 (2013). https://doi.org/10.1007/s00227-012-2154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2154-8

Keywords

Navigation