Skip to main content
Log in

Temporary cyst enables long-term dark survival of Scrippsiella hangoei (Dinophyceae)

Marine Biology Aims and scope Submit manuscript

Abstract

We examined the dark survival strategy of the cold-water dinoflagellate Scrippsiella hangoei from the Baltic Sea. Cultures of S. hangoei were placed in dark and light and we followed the morphological developmentand, determined respiration rate and activity of extracellular leucine aminopeptidase (LAP). S. hangoei had LAP activity in the light, but not in the dark, suggesting that the degradation and use of organic substrates is not part of the dark survival strategy. After prolonged time in darkness (>5 days), S. hangoei started to shed flagella and theca, and produced a previously undescribed temporary cyst. The transformation from vegetative cell into the temporary cyst initially increased respiration rate tenfold, but after the transformation the respiration rate decreased to almost undetectable levels. The presented temporary cyst enables survival through long periods in dark by reducing the respiration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson DM, Wall D (1978) Potential importance of benthic cysts of Gonyaulax tamarensis and G. excavata in initiating toxic dinoflagellate blooms. J Phycol 14:224–234

    Article  Google Scholar 

  • Anderson JT, Stoecker DK, Hood RR (2003) Formation of two types of cyst by a mixotrophic dinoflagellate, Pfiesteria piscicida. Mar Ecol Prog Ser 246:95–104

    Google Scholar 

  • Binder BJ, Anderson DM (1990) Biochemical composition and metabolic activity of Scrippsiella trochoidea (Dinophyceae) resting cysts. J Phycol 26:289–298

    Article  CAS  Google Scholar 

  • Carlsson P, Graneli E (1998) Utilization of dissolved organic matter (DOM) by phytoplankton, including harmful speceis. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiology of harmful algal blooms. NATO ASI series G41. NATO ASI series. Springer, Berlin, pp 509–524

  • Dale B (1977) Cysts of the toxic red-tide dinoflagellate Gonyaulax excavata (Braaud) Balech from Oslofjorden, Norway. Sarsia 63:29–34

    Google Scholar 

  • Ehn J, Granskog MA, Reinart A, Erm AdJ (2004) Optical properties of melting landfast sea ice and underlying sea water in Santala Bay, Gulf of Finland. J Geophys Res 109, C09003:1–12

    Google Scholar 

  • Garcés E, Delgado M, Maso M, Camp J (1998) Life history and in situ growth rates of Alexandrium taylori (Dinophyceae, Pyrrophyta). J Phycol 34:880–887

    Article  Google Scholar 

  • Garcés E, Masó M, Camp J (2002) Role of temporary cyst in the population dynamics of Alexandrium taylori (Dinophyceae). J Plankton Res 24:681–686

    Article  Google Scholar 

  • del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–151

    Article  Google Scholar 

  • Grenfell TC, Maykut GA (1977) The optical properties of ice and snow in the Arctic basin. J Glaciol 18:445–463

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Hansen G (1995) The use of scanning electron microscopy in dinoflagellate taxonomy. Scanning 17 Suppl 97

    Google Scholar 

  • Ikävalko J, Thomsen HA (1997) The Baltic Sea ice biota (March 1994): a study of the protistan community. Europ J Protistol 33:229–243

    Google Scholar 

  • Kim CH, Cho HJ, Shin JB, Moon CH, Matsuoka K (2002) Regeneration from hyaline cysts of Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae), a red tide organism along the Korean coast. Phycologia 41:667–669

    Article  Google Scholar 

  • Kita T, Fukuyo Y, Tokuda H, Hirano R (1985) Life history and ecology of Goniodoma pseudogoniaulax (Pyrrhophyta) in a rockpool. Bull Mar Sci 37:643–651

    Google Scholar 

  • Kremp A, Elbrächter M, Schweikert M, Wolny JL, Gottschling M (2005) Woloszynskia halophila (Biecheler) comb. nov.: a bloom-forming cold-water dinoflagellate co-occurring with Scrippsiella hangoei (Dinophyceae) in the Baltic Sea. J Phycol 41:629–642

    Article  Google Scholar 

  • Kremp A, Parrow MW (2006) Evidence for asexual resting cysts in the life cycle of the marine peridinoid dinoflagellate, Scrippsiella hangoei. J Phycol 42:400–409

    Article  CAS  Google Scholar 

  • Larsen J, Kuosa H, Ikävalko J, Kivi K, Hallfors S (1995) A redescription of Scrippsiella hangoei (Schiller) Comb-Nov—a red tide dinoflagellate from the northern Baltic. Phycologia 34:135–144

    Google Scholar 

  • Legrand C, Carlsson P (1998) Uptake of high molecular weight dextran by the dinoflagellate Alexandrium catenella. Aquat Microb Ecol 16:81–86

    Google Scholar 

  • Nagasaki K, Yamaguchi M, Imai I (2000) Algicidal activity of a killer bacterium against the harmfull red tide dinoflagellate Heterocapsa circularisquama isolated from Ago Bay Japan. Bull Jpn Soc Sci Fish 66:666–673

    Google Scholar 

  • Olli K (2004) Temporary cyst formation of Heterocapsa triquetra (Dinophyceae) in natural populations. Mar Biol 145:1–8

    Article  Google Scholar 

  • Persson A, Rosenberg R (2003) Impact of grazing and bioturbation of marine benthic deposit feeders on dinoflagellate cysts. Harmful Algae 2:43–50

    Article  Google Scholar 

  • Rintala J-M, Piiparinen J, Ehn J, Autio R, Kuosa H (2006) Changes in phytoplankton biomass and nutrient quantities in sea ice as responses to light/dark manipulations during different phases of the Baltic winter 2003. Hydrobiologia 554:11–24

    Article  CAS  Google Scholar 

  • Sarath G, De La Motte RS, Wagner FW (1989) Protease assay methods. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes a practical approach. IRL Press, Oxford, pp 25–55

    Google Scholar 

  • Scavia D, Laird GA (1987) Bacterioplankton in Lake Michigan: dynamics, controls, and significance to carbon flux. Limnol Oceanogr 32:1017–1033

    CAS  Google Scholar 

  • Somville M, Billen G (1983) A method determining exoproteolytic activity in natural wates. Limnol Oceanogr 28:190–193

    CAS  Google Scholar 

  • Spilling K (2007) On the ecology of cold-water phytoplankton in the Baltic Sea. PhD Thesis, University of Helsinki, Department of Biological Environmental Science. W & A de Nottbeck Foundation Science Report, vol 31, pp 1–59

  • Stoecker DK, Autio R, Rintala J-M, Kuosa H (2005) Ecto-cellular enzyme activity associated with filamentous cyanobacteria. Aquat Microb Ecol 40:151–161

    Google Scholar 

  • Stoecker DK, Gustafson DE (2003) Cell-surface proteolytic activity of photosynthetic dinoflagellates. Aquat Microb Ecol 30:175–183

    Google Scholar 

  • Tarutani K, Nagasaki K, Itakura S, Yamaguchi M (2001) Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat Microb Ecol 23:103–111

    Google Scholar 

  • Taylor FJR, Pollingher U (1987) Ecology of dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Botanical monographs, vol 21. Blackwell Scientific Publications, Oxford, pp 398–529

  • Williams PJ leB, Jenkinson NW (1982) A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use. Limnol Oceanogr 27:576–584

    Article  Google Scholar 

  • Xiao Y, Qi Y, Wang Z, Lu S (2001) The relationship between Scrippsiella trochoidea red tide and cysts in the Daya Bay. Mar Sci Haiyang Kexue 25:50–54

    Google Scholar 

Download references

Acknowledgments

This study was made possible by the financial support granted from Walter and Andrée de Nottbeck Foundation, Academy of Finland and Emil Aaltonen Foundation. We thank the Finnish Institute of Marine Research for providing the laboratory and office facilities needed in this study and University Helsinki, in particular the Unit of Electron Microscopy, Institute of Biotechnology for assistance in sample preparation. We also thank H. Kuosa and R. Autio for supervision and J. Piiparinen for bacterial counts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Spilling.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rintala, JM., Spilling, K. & Blomster, J. Temporary cyst enables long-term dark survival of Scrippsiella hangoei (Dinophyceae). Mar Biol 152, 57–62 (2007). https://doi.org/10.1007/s00227-007-0652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0652-x

Keywords

Navigation